TRANSVERSAL JACOBI FIELDS FOR HARMONIC FOLIATIONS

Franz W. Kamber, Philippe Tondeur and Gabor Toth

1. Introduction. A foliation \mathcal{F} on a manifold M is given by the exact sequence of vectorbundles

$$0 \to L \to TM \xrightarrow{\pi} Q \to 0$$
,

where L is the tangent bundle and Q the normal bundle of \mathfrak{F} . If $V(\mathfrak{F})$ denotes the Lie algebra of infinitesimal automorphisms of \mathfrak{F} , we have an exact sequence of Lie algebras

$$0 \to \Gamma L \to V(\mathfrak{F}) \xrightarrow{\pi} \Gamma Q^L \to 0$$
,

where ΓQ^L denotes the invariant sections of Q under the action of ΓL by Lie derivatives [4; 9]. We assume throughout that \mathfrak{F} is Riemannian, with a bundle-like metric g_M on M inducing the holonomy invariant metric g_Q on $Q \cong L^1$ [10]. ∇ denotes the unique metric and torsion-free connection in Q (see, e.g., [3; 9; 10]). Associated to ∇ are transversal curvature data, in particular the (transversal) Ricci operator $\rho_{\nabla} \colon Q \to Q$ and the Jacobi operator $J_{\nabla} = \Delta - \rho_{\nabla} \colon \Gamma Q \to \Gamma Q$ [4]. In this paper we study geometric properties of infinitesimal automorphisms $Y \in V(\mathfrak{F})$ such that $\overline{Y} = \pi(Y) \in \Gamma Q^L$ satisfies the Jacobi condition $J_{\nabla} \overline{Y} = 0$. In view of the variational meaning of J_{∇} [4], it is then natural to assume \mathfrak{F} to be harmonic; that is, all leaves of \mathfrak{F} are minimal submanifolds [3].

THEOREM A. Let \mathfrak{F} be a transversally orientable harmonic Riemannian foliation on a compact orientable Riemannian manifold (M, g_M) , and Y an infinitesimal automorphism of \mathfrak{F} . Then the following properties are equivalent:

- (i) \bar{Y} is a transversal Killing field, that is, $\theta(Y)g_Q = 0$;
- (ii) \bar{Y} is a transversally divergence-free Jacobi field;
- (iii) \bar{Y} is transversally affine, that is, $\theta(Y)\nabla = 0$.

REMARKS. (1) If \mathfrak{F} is given by the fibers of a harmonic submersion $f: M \to N$, the equivalence of (i) and (ii) specializes to the statement that a projectable vector field $v = V \circ f$ ($V \in \Gamma T N$) along f is a divergence-free Jacobi field along f if and only if V is a Killing vector field on N (see [12] for the particular case $N = S^n$). Note, however, that the Jacobi condition for v in the harmonic map theory uses the pull-back of the Riemannian connection of N which, in general, differs from the canonical connection ∇ in Q [3].

(2) For the foliation of M by points, the equivalence of (i) and (ii) is the classical characterization of Killing vector fields given by Lichnerowicz [7] and Yano [14]; the implication (iii) \Rightarrow (i) is due to Yano [14].

Received April 4, 1986.

The work of the first two authors was supported in part by a grant from the National Science Foundation.

Michigan Math. J. 34 (1987).

THEOREM B. Let \mathfrak{F} and Y be as in Theorem A with codim $\mathfrak{F}=2$. Then the following properties are equivalent:

- (i) \bar{Y} is a transversal conformal field, that is, $\theta(Y)g_Q = \sigma \cdot g_Q$;
- (ii) \bar{Y} is a transversal Jacobi field.

REMARK. For the point foliation this result goes back to Lichnerowicz [7]. A sharpening for Jacobi fields along conformal diffeomorphisms was given by Smith [11] (see also [12]).

The key to obtaining Theorems A and B is the transversal divergence theorem given in Section 2 (Theorem C). In Section 3, we generalize the operators δ , δ * occurring in the Berger-Ebin decomposition [1] to the foliation context. They play a crucial role in deriving a basic identity relating the trace Laplacian and curvature (Theorem D, (i)). The proofs of Theorem A and B are given in Section 4. Finally, in Section 5, we give a few examples.

The terminology for foliations is based on [3-6; 9; 10]. For the related concepts and results in harmonic map theory we refer to Eells-Lemaire [2].

2. Transversal divergence theorem. Let \mathfrak{F} be as in Theorem A and let $\Omega_B^*(\mathfrak{F}) \subset \Omega(M)$ be the subcomplex of basic forms (forms killed by i(X), $\theta(X)$ for $X \in \Gamma L$, cf. [5; 6; 9; 10]). The transversal orientation and g_Q give rise to a transversal volume form $v \in \Omega_B^q(\mathfrak{F})$, $q = \operatorname{codim} \mathfrak{F}$. Clearly dv = 0. The characteristic form of \mathfrak{F} (a volume form along the leaves) is given by $\chi_{\mathfrak{F}} = *v \in \Omega^p(M)$, $p+q=n=\dim M$, with respect to the Hodge star operator of g_M on $\Omega(M)$. Then $\mu = v \wedge \chi_{\mathfrak{F}}$ is the Riemannian volume form of (M, g_M) . Given an infinitesimal automorphism Y of \mathfrak{F} , the transversal divergence $\operatorname{div}_B \bar{Y}$ is defined as the unique basic scalar satisfying

$$\theta(Y)\nu = \operatorname{div}_B \bar{Y} \cdot \nu$$
.

It depends only on $\bar{Y} = \pi(Y)$.

THEOREM C. Let F and Y be as in Theorem A. Then

$$\int_M \operatorname{div}_B \, \overline{Y} \cdot \mu = 0.$$

Proof. We have

$$\operatorname{div}_{B} \bar{Y} \cdot \mu = (\operatorname{div}_{B} \bar{Y} \cdot \nu) \wedge \chi_{\mathfrak{F}} = \theta(Y) \nu \wedge \chi_{\mathfrak{F}} = (\operatorname{di}(Y)\nu) \wedge \chi_{\mathfrak{F}}$$
$$= d(i(Y)\nu \wedge \chi_{\mathfrak{F}}) + (-1)^{q} i(Y)\nu \wedge d\chi_{\mathfrak{F}}.$$

By Stokes' theorem it suffices to show that the second term is in fact zero. To prove this, we consider the canonical multiplicative filtration [5; 6]

$$F^r\Omega^m = \{\omega \in \Omega^m \mid i(X_1) \cdots i(X_{m-r+1})\omega = 0, X_j \in \Gamma L, j = 1, \dots, m-r+1\},\$$

which breaks off above q. We have $v \in F^q$ and $i(Y)v \in F^{q-1}$. The harmonicity of \mathfrak{F} is expressed by the \mathfrak{F} -triviality of $d\chi_{\mathfrak{F}}$ or equivalently by $d\chi_{\mathfrak{F}} \in F^2$ [5; 6]. Thus $i(Y)v \wedge d\chi_{\mathfrak{F}}$ has filter degree (q-1)+2=q+1 and hence vanishes.

3. Operators δ , δ^* and fundamental identities. To introduce various differential operators below it is convenient to use the following special (orthonormal) moving frames on M. For $x \in M$, let $\{e_A\}_{A=1}^n \subset T_x M$ be an (oriented) orthonormal basis with $\{e_i\}_{i=1}^p \subset L_x$ and $\{e_\alpha\}_{\alpha=p+1}^n \subset Q_x \cong L_x^\perp$. Let U be a distinguished (flat) neighborhood of x for \mathfrak{F} with local (Riemannian) submersion $f\colon U\to B$. For $\alpha=p+1,\ldots,n$, let $E_\alpha\in\Gamma(U,Q)$ be the pull-back of the extension of f_*e_α to a vector field on B by parallel transport along geodesic segments emanating from f(x) (use [10, Prop. 4.2]). Then we complete $\{E_\alpha\}_{\alpha=p+1}^n$ by the Gram-Schmidt process to a moving frame $\{E_A\}_{A=1}^n$ by adding $E_i\in\Gamma(U,L)$ with $(E_i)_x=e_i$, $i=1,\ldots,p$. We have then for $\alpha,\beta=p+1,\ldots,n$:

$$\nabla_{e_{\alpha}} E_{\beta} = (\nabla_{E_{\alpha}} E_{\beta})_{x} = 0;$$

and, as a consequence of torsion-freeness [3, 1.5], $[E_{\alpha}, E_{\beta}]_x \in L_x$. Furthermore, as the E_{α} are infinitesimal automorphisms, we have

$$\nabla_X E_\alpha = \pi[X, E_\alpha] = 0, \quad X \in \Gamma(U, L).$$

Generalizing to the foliation context the operators occurring in the Berger-Ebin decomposition [1], we define $\delta \colon \Gamma S^2 Q^* \to \Gamma Q^*$, $S^2 =$ symmetric square, by the local formula

$$\delta h = -\sum_{\alpha=p+1}^{n} (\nabla_{E_{\alpha}} h)(E_{\alpha}, \cdot), \quad h \in \Gamma S^{2} Q^{*}$$

and $\delta^*: \Gamma Q^* \to \Gamma S^2 Q^*$ by

$$(\delta^*\omega)(V,W) = \frac{1}{2}\{(\nabla_V\omega)(W) + (\nabla_W\omega)(V)\}, \quad \omega \in \Gamma Q^*, \quad V, W \in \Gamma Q.$$

Note that $\Omega_B^1(\mathfrak{F}) \subset \Gamma Q^*$. Similarly, the basic symmetric 2-forms (killed by i(X), $\theta(X)$ for $X \in \Gamma L$) will be identified with a subspace of $\Gamma S^2 Q^*$.

PROPOSITION 1. δ and δ * map basic forms to basic forms.

Proof. For $X \in \Gamma L$, a direct calculation yields the commutation relations

$$([\theta(X),\delta]h)(e_{\alpha}) = -\sum_{\beta=p+1}^{n} [X,E_{\beta}]_{X}\{h(E_{\alpha},E_{\beta})\}, \quad h \in \Gamma S^{2}Q^{*},$$

$$(2[\theta(X),\delta^*]\omega)(E_\alpha,E_\beta)=[X,E_\alpha]\{\omega(E_\beta)\}+[X,E_\beta]\{\omega(E_\alpha)\},\quad \omega\in\Gamma Q^*.$$

If h is basic, then $\theta(X)h = 0$ and the right-hand side of the first formula vanishes, as $h(E_{\alpha}, E_{\beta}) \in \Omega_{B}^{o}(\mathfrak{F})$ and $[X, E_{\beta}]_{x} \in L_{x}$. Thus $\theta(X)\delta h = 0$ and δh is basic. The argument for δ^{*} is similar.

PROPOSITION 2. For basic $h \in \Gamma S^2 Q^*$ and $\omega \in \Omega^1_B(\mathfrak{F})$ we have $\langle \delta h, \omega \rangle = \langle h, \delta^* \omega \rangle$ with respect to the global scalar product on basic forms.

Proof. Indeed, by local computation, we find for the pointwise scalar product that

$$(\delta h, \omega)_X = -(\operatorname{div}_B Z)_X + (h, \delta^* \omega)_X,$$

where $Z \in \Gamma Q^L$ is the g_Q -dual of the basic 1-form λ given locally by

$$\lambda = \sum_{\beta = p+1}^{n} h(\cdot, E_{\beta}) \omega(E_{\beta}).$$

The proposition follows now by integration, applying Theorem C.

Let d_B be the restriction of d to basic forms. The adjoint is denoted by $\delta_B \colon \Omega_B^r(\mathfrak{F}) \to \Omega_B^{r-1}(\mathfrak{F})$. For a harmonic Riemannian \mathfrak{F} it follows from [5; 6] that δ_B on $\omega \in \Omega^1_B(\mathfrak{F})$ is given by the formula

$$\delta_B \omega = -\sum_{\alpha} (\nabla_{E_{\alpha}} \omega) (E_{\alpha}).$$

The range of a summation over a greek index is here, and everywhere below, to extend from p+1 to n.

THEOREM D. Let \mathfrak{F} and Y be as in Theorem A, and $\omega \in \Omega^1_B(\mathfrak{F})$ the g_O -dual of $\bar{Y} = \pi(Y)$. Then we have the following identities:

- (1) $2\delta\delta^*\omega = -\operatorname{trace} \nabla^2\omega \rho_{\nabla}(\omega) + d_B\delta_B\omega$;
- (2) $\operatorname{div}_B \bar{Y} = -\delta_B \omega = (\delta^* \omega, g_Q);$ (3) $|\delta^* \omega 1/q \cdot \operatorname{div}_B \bar{Y} \cdot g_Q|^2 = |\delta^* \omega|^2 (1/q) (\operatorname{div}_B \bar{Y})^2$ (pointwise norms).

Proof. At $x \in M$, we have

$$\begin{split} 2(\delta\delta^*\omega)(e_{\beta}) &= -2\sum_{\alpha} \left(\nabla_{e_{\alpha}}(\delta^*\omega)\right)(e_{\alpha}, e_{\beta}) = -2\sum_{\alpha} e_{\alpha}\{(\delta^*\omega)(E_{\alpha}, E_{\beta})\} \\ &= -\sum_{\alpha} e_{\alpha}\{(\nabla_{E_{\alpha}}\omega)(E_{\beta}) + (\nabla_{E_{\beta}}\omega)(E_{\alpha})\} \\ &= -(\operatorname{trace} \nabla^2\omega)(e_{\beta}) - \sum_{\alpha} e_{\alpha}E_{\beta}\{\omega(E_{\alpha})\} + \sum_{\alpha} e_{\alpha}\{\omega(\nabla_{E_{\beta}}E_{\alpha})\} \\ &= -(\operatorname{trace} \nabla^2\omega)(e_{\beta}) - \sum_{\alpha} e_{\beta}E_{\alpha}\{\omega(E_{\alpha})\} - \sum_{\alpha} \omega(\nabla_{e_{\alpha}}\nabla_{E_{\beta}}E_{\alpha}), \end{split}$$

where in the last equality we used the fact that $[E_{\alpha}, E_{\beta}]_{x} \{\omega(E_{\alpha})\} = 0$, as $\omega(E_{\alpha})$ is basic and $[E_{\alpha}, E_{\beta}]_x \in L_x$. On the other hand,

$$egin{aligned} (d_B \delta_B \omega)(e_eta) &= -e_eta iggl\{ \sum_lpha \left(
abla_{E_lpha} \omega
ight)(E_lpha) iggr\} \ &= -\sum_lpha e_eta E_lpha \{ \omega(E_lpha) \} + \sum_lpha \omega(
abla_{e_eta}
abla_{E_lpha} E_lpha). \end{aligned}$$

Noting that $\nabla_{[E_{\alpha},E_{\beta}]_x}E_{\alpha}$ does not contribute to the curvature $R_{\nabla}(e_{\alpha},e_{\beta})$, as $[E_{\alpha}, E_{\beta}]_x \in L_x$, we obtain (1). As for (2), we have

$$(\Theta(Y)\nu)(E_{p+1},...,E_n) = Y\{\nu(E_{p+1},...,E_n)\} - \sum_{\alpha} \nu(E_{p+1},...,\pi[Y,E_{\alpha}],...,E_n)$$

$$= -\sum_{\alpha} g_Q(\pi[Y,E_{\alpha}],E_{\alpha})$$

$$= \sum_{\alpha} g_Q(\nabla_{E_{\alpha}} \bar{Y},E_{\alpha})$$

$$= \sum_{\alpha} (\nabla_{E_{\alpha}} \omega)(E_{\alpha})$$

$$= -\delta_B \omega,$$

while the second equality is immediate. Using (2), the left-hand side of (3) can be rewritten as

$$|\delta^*\omega|^2 - \frac{2}{q}\operatorname{div}_B \bar{Y} \cdot (\delta^*\omega, g_Q) + \frac{1}{q}(\operatorname{div}_B \bar{Y})^2 = |\delta^*\omega|^2 - \frac{1}{q}(\operatorname{div}_B \bar{Y})^2,$$
and (3) follows.

4. Proof of Theorems A and B. We first observe that \bar{Y} is transversally Killing if and only if $\delta^*\omega = 0$, \bar{Y} is transversally Jacobi if and only if trace $\nabla^2\omega + \rho_{\nabla}(\omega) = 0$ (by duality), and \bar{Y} is transversally divergence-free if and only if $\delta_B\omega = 0$. The equivalence of (i) and (ii) in Theorem A follows readily from Theorem D. As shown in [4], (i) \Rightarrow (iii). It therefore suffices to prove (iii) \Rightarrow (ii). We use the characterization of transversally affine infinitesimal automorphisms by the identity

$$\nabla_V A_{\nabla}(Y) = R_{\nabla}(\bar{Y}, V), \quad V \in \Gamma Q,$$

where $A_{\nabla}(Y): Q \to Q$ is given by the difference $\theta(Y) - \nabla_Y$ (and depends only on \bar{Y} , see [4]). Evaluating this identity for $V = E_{\alpha}$ and summing over α , we obtain $-\operatorname{trace} \nabla^2 \bar{Y} = \rho_{\nabla}(\bar{Y})$, which is precisely the Jacobi condition. It remains to show $\operatorname{div}_B \bar{Y} = 0$. By Theorem C, it suffices to show that $\operatorname{div}_B \bar{Y}$ is a constant function. Since $\operatorname{div}_B \bar{Y} \in \Omega_B^{\circ}(\mathfrak{F})$, it remains to verify that $e_{\beta} \operatorname{div}_B \bar{Y} = 0$, $\beta = p+1, \ldots, n$. Indeed, we have

$$\begin{split} e_{\beta} \operatorname{div}_{B} \bar{Y} &= e_{\beta} \left\{ \sum_{\alpha} g_{Q}(\nabla_{E_{\alpha}} \bar{Y}, E_{\alpha}) \right\} \\ &= \sum_{\alpha} g_{Q}(\nabla_{e_{\beta}} \nabla_{E_{\alpha}} \bar{Y}, E_{\alpha}) \\ &= -\sum_{\alpha} g_{Q}((\nabla_{e_{\beta}} A_{\nabla}(Y))(E_{\alpha}), E_{\alpha}) \\ &= -\sum_{\alpha} g_{Q}(R_{\nabla}(\bar{Y}_{X}, e_{\beta})e_{\alpha}, e_{\alpha}) \\ &= 0. \end{split}$$

which completes the proof of Theorem A.

To prove Theorem B, we first note that the transversal conformality condition translates to $2\delta^*\omega = \sigma \cdot g_Q$. By (2) and $(g_Q, g_Q) = q$, this identity is further equivalent to $\delta^*\omega = 1/q \operatorname{div}_B \bar{Y} \cdot g_Q$. Applying δ to both sides, and observing that the holonomy invariance of g_Q implies $\delta g_Q = 0$, we have

$$\delta \delta^* \omega = \frac{1}{q} \delta(\operatorname{div}_B \bar{Y} \cdot g_Q) = -\frac{1}{q} d_B(\operatorname{div}_B \bar{Y}) = \frac{1}{q} d_B \delta_B \omega.$$

For q=2, this reduces (1) to the Jacobi condition for \bar{Y} . Assuming conversely the Jacobi condition for \bar{Y} , we have, again by (1), $2\delta\delta^*\omega = d_B\delta_B\omega$. Taking the global scalar product with ω , we obtain

$$2\|\delta^*\omega\|^2 - \|\operatorname{div}_B \bar{Y}\|^2 = 0.$$

For q = 2, identity (3) implies the transversal conformality of \bar{Y} .

- 5. Examples. (1) Given a compact oriented Riemannian manifold M with positive semidefinite Ricci tensor, the Albanese (Jacobi) map $J: M \to A(M)$ is the totally geodesic projection of a fibre bundle over the flat Albanese torus A(M), of dimension equal to the first Betti number of M [8; 12]. From the geometric properties of this bundle it follows that the linear space of parallel vector fields on M is isomorphic (via J_*) with the linear space of parallel vector fields on M. By Theorem A, this space is further isomorphic with the linear space of transversal divergence-free Jacobi automorphisms of the corresponding harmonic Riemannian foliation.
- (2) By Theorem B, the linear space of transversal Jacobi automorphisms of the harmonic Hopf fibration $f: S^3 \to S^2$ is isomorphic with the linear space of infinitesimally conformal fields on S^2 , in particular, it is 6-dimensional. Note further that the nullity of f as a harmonic map equals 8 [13].

REFERENCES

- 1. M. Berger and D. Ebin, Some decompositions of the space of symmetric tensors on a Riemannian manifold, J. Differential Geom. 3 (1969), 379–392.
- 2. J. Eells and L. Lemaire, *A report on harmonic maps*, Bull. London Math. Soc. 10 (1978), 1-68.
- 3. F. W. Kamber and Ph. Tondeur, *Harmonic foliations*. Harmonic maps (New Orleans, La., 1980), 87–121, Lecture Notes in Math., 949, Springer, Berlin, 1982.
- 4. ——, Infinitesimal automorphisms and second variation of the energy for harmonic foliations, Tôhoku Math. J. 34 (1982), 525–538.
- 5. ——, *Duality for Riemannian foliations*. Singularities, Part 1 (Arcata, Calif., 1981), 609-618, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, R.I., 1983.
- 6. ——, Foliations and metrics. Differential geometry (College Park, Md., 1981/82), 103-152, Birkhäuser, Boston, Mass., 1983.
- 7. A. Lichnerowicz, Géométrie des groupes de transformations, Dunod, Paris, 1958.
- 8. ——, Variétés Kählériennes à première classe de Chern non negative et variétés Riemanniennes à courbure de Ricci généralisée non negative, J. Differential Geom. 6 (1971), 47–94.
- 9. P. Molino, *Géometrie globale des feuilletages riemanniens*, Nederl. Akad. Wetensch. Indag. Math. 85 (1982), 45–76.
- 10. B. L. Reinhart, Differential geometry of foliations, Springer, Berlin, 1983.
- 11. R. T. Smith, *Harmonic mappings of spheres*, Thesis, Warwick Univ., England, 1972.
- 12. G. Toth, *Harmonic and minimal maps*, E. Horwood, Chichester, 1984.
- 13. H. Urakawa, *Stability of harmonic maps and eigenvalues of Laplacian*, preprint, Universität Bonn, 1985.
- 14. K. Yano, On harmonic and Killing vector fields, Ann. of Math. (2) 55 (1952), 38-45.

F. W. Kamber and Ph. Tondeur Department of Mathematics University of Illinois Champaign-Urbana, IL 61801 G. Toth
Department of Mathematics
Rutgers University
Camden, NJ 08102