TRANSVERSAL JACOBI FIELDS
FOR HARMONIC FOLIATIONS
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1. Introduction. A foliation ¥ on a manifold M is given by the exact sequence
of vectorbundles

0-L->TMSQ—0,

where L is the tangent bundle and Q the normal bundle of &. If V(F) denotes the
Lie algebra of infinitesimal automorphisms of &, we have an exact sequence of
Lie algebras

0-T'L-V(F)HTQL-0,

where I'Q% denotes the invariant sections of Q under the action of I'L by Lie de-
rivatives [4; 9]. We assume throughout that & is Riemannian, with a bundle-like
metric gy on M inducing the holonomy invariant metric go on Q = Lt [10]. V de-
notes the unique metric and torsion-free connection in Q (see, e.g., [3; 9; 10]). As-
sociated to V are transversal curvature data, in particular the (transversal) Ricci
operator py: Q — Q and the Jacobi operator Jy=A—py:T'Q—->T'Q [4]. In this
paper we study geometric properties of infinitesimal automorphisms Y e V()
such that ¥ = x(Y) e ' QZ satisfies the Jacobi condition Jy ¥ =0. In view of the
variational meaning of Jy [4], it is then natural to assume § to be harmonic; that
is, all leaves of ¥ are minimal submanifolds [3].

THEOREM A. Let & be a transversally orientable harmonic Riemannian folia-
tion on a compact orientable Riemannian manifold (M, g)s), and Y an infinites-
imal automorphism of §. Then the following properties are equivalent:

(1) Y is a transversal Killing field, that is, 0(Y)gp=0;
(ii) Y is a transversally divergence-free Jacobi field;
(iii) Y is transversally affine, that is, 6(Y)V =0.

REMARKS. (1) If § is given by the fibers of a harmonic submersion f: M — N,
the equivalence of (i) and (ii) specializes to the statement that a projectable vec-
tor field v=Vof (VeI'TN) along f is a divergence-free Jacobi field along f if
and only if V' is a Killing vector field on N (see [12] for the particular case N = S").
Note, however, that the Jacobi condition for v in the harmonic map theory uses
the pull-back of the Riemannian connection of N which, in general, differs from
the canonical connection V in Q [3].

(2) For the foliation of M by points, the equivalence of (i) and (ii) is the clas-
sical characterization of Killing vector fields given by Lichnerowicz [7] and Yano
[14]; the implication (iii)= (i) is due to Yano [14].
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THEOREM B. Let & and Y be as in Theorem A with codim & =2. Then ihe
Jfollowing properties are equivalent:

(i) Y is a transversal conformal field, that is, 0(Y)go=0-80;

(ii) Y is a transversal Jacobi field.

REMARK. For the point foliation this result goes back to Lichnerowicz [7].
A sharpening for Jacobi fields along conformal diffeomorphisms was given by
Smith [11] (see also [12]).

The key to obtaining Theorems A and B is the transversal divergence theorem
given in Section 2 (Theorem C). In Section 3, we generalize the operators 5, 6*
occurring in the Berger-Ebin decomposition [1] to the foliation context. They
play a crucial role in deriving a basic identity relating the trace Laplacian and
curvature (Theorem D, (i)). The proofs of Theorem A and B are given in Sec-
tion 4. Finally, in Section 5, we give a few examples.

The terminology for foliations is based on [3-6; 9; 10]. For the related con-
cepts and results in harmonic map theory we refer to Eells-Lemaire [2].

2. Transversal divergence theorem. Let F be as in Theorem A and let Qz(F) C
(M) be the subcomplex of basic forms (forms killed by i(X), 6(X) for XeTI'L,
cf. [5; 6; 9; 10]). The transversal orientation and g, give rise to a transversal
volume form » € Q%(F), g =codim F. Clearly dv = 0. The characteristic form of
F (a volume form along the leaves) is given by xg=*rve Q’(M), p+g=n=
dim M, with respect to the Hodge star operator of gas on Q(M). Then u=vAxg
is the Riemannian volume form of (M, gas). Given an infinitesimal automor-
phism Y of &, the transversal divergence divg Y is defined as the unique basic
scalar satisfying

0(Y)y =divg Y-».
It depends only on ¥ =n(Y).
THEOREM C. Let F and Y be as in Theorem A. Then

SM divg Y-u=0.

Proof. We have
divg Y- u=(divg Y- V)Axs=0(Y)v A x5 =(di(Y)v)A x5
=d(i(Y)vAxs)+ (=D (Y)vAdxs.

By Stokes’ theorem it suffices to show that the second term is in fact zero. To
prove this, we consider the canonical multiplicative filtration [5; 6]

F'Q"={weQ"i(X1) - i(Xm-r+1)o=0, X;e'L, j=1,...,m—r+1},

which breaks off above g. We have ve F7? and i(Y)v € F?~!. The harmonicity
of & is expressed by the F-triviality of dxgs or equivalently by dxgs e F? [5; 6].
Thus i(Y)v Adxs has filter degree (gq—1)+2 =g+ 1 and hence vanishes. L]
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3. Operators 6, 6* and fundamental identities. To introduce various differen-
tial operators below it is convenient to use the following special (orthonormal)
moving frames on M. For xe M, let {e4})y—, C Ty M be an (oriented) orthonor-
mal basis with {e;}{—;C L, and {e,}n-,+1C Qx=Ly. Let U be a distinguished
(flat) neighborhood of x for & with local (Riemannian) submersion f: U — B.
For a=p+1,...,n, let E, eI’ (U, Q) be the pull-back of the extension of f,e,
to a vector field on B by parallel transport along geodesic segments emanating
from f(x) (use [10, Prop. 4.2]). Then we complete {E,}q=p+1 by the Gram-
Schmidt process to a moving frame {4} - by adding E; e I'(U, L) with (E;),=
e, i=1,...,p. We have then for o, B=p+1, ..., n:

VedE,G = (VEaEﬁ)x =0;
and, as a consequence of torsion-freeness [3, 1.5], [E,, Eg]« € L,. Furthermore,
as the E, are infinitesimal automorphisms, we have
VyxE,=7[X,E,]=0, XeI'(UL).

Generalizing to the foliation context the operators occurring in the Berger-
Ebin decomposition [1], we define 6: 'S?Q* - I'Q*, S?=symmetric square, by
the local formula

n

Sh=— 3 (Vg h)(Es "), helS?Q*

a=p+1
and 6*: I'Q* - I'S2Q* by
(*)(V, W)= 3 {(Vy ) (W) + (V) (V)], «elQ* V,WeTQ.
Note that QL(F) cI'Q*. Similarly, the basic symmetric 2-forms (killed by
i(X),0(X) for X eI'L) will be identified with a subspace of ['S2Q*.
PROPOSITION 1. 6 and 6* map basic forms to basic forms.

Proof. For X e 'L, a direct calculation yields the commutation relations

([0(X),81h)(ex) =— I [X,Egli{h(Es, Ep)), hel'S2Q*,

B=p+1
(2[0(X), 6*]w)(Eq, Eg) =X, Ec]{w(ER)} +[X, Egl{w(EL)}, wel'Q*
If A is basic, then 8(X )k = 0 and the right-hand side of the first formula vanishes,

as H(Ey, Eg) e Qp(F) and [X, Eglye L,. Thus 6(X)6h=0 and 64 is basic. The
argument for 6* is similar. O

PROPOSITION 2. For basic he I'S*Q* and w € Q5(F) we have (8h, w) = (h, 6*w)
with respect to the global scalar product on basic forms.

Proof. Indeed, by local computation, we find for the pointwise scalar product
that

(6h, w)y= —(divpg Z)x+ (h, 6*w)x,
where ZeI'Q' is the go-dual of the basic 1-form X given locally by
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A= 3 h(,Eg)w(Eg).

B=p+1

The proposition follows now by integration, applying Theorem C. ]

Let dp be the restriction of d to basic forms. The adjoint is denoted by
op: QB(F) -» Q% 1(F). For a harmonic Riemannian & it follows from [5; 6] that
6p on w € QL(F) is given by the formula

dpw=—2 (Ve, w)(Ey).
The range of a summation over a greek index is here, and everywhere below, to
extend from p+1 to n.

THEOREM D. Let § and Y be as in Theorem A, and w € Qp(F) the go-dual of
Y =n(Y). Then we have the following identities:

(1) 266*w = —trace VZw— py(w)+dpépw;

(2) diVB Y= —-530) = (5*0), gQ);

3) |6*w—1/q-divp )_’-gQ|2 =|6*w|*—(1/q) (divg Y)? (pointwise norms).

Proof. At x € M, we have
2(66*w)(eg) = —2 % (Ve (6%w)) (eq, €g) = —2 % ex{(6%w) (Eq, Eg)}
= — %; ea{(Ve, 0)(Eg)+ (Vg  0) (Eq))
= —(trace V2w) (eg) — % eoEg{w(Ey)} + % ea{w(VEy Eq)}
= — (trace V2w) (eg) — %} egEolw(E)}— X o(Ve, Ve, Eq),

@

where in the last equality we used the fact that [E,, Egli{w(E,)} =0, as w(E,) is
basic and [E,, Egly € Ly. On the other hand,

(dpépw)(eg) = —eg [E (Van)(Ea)}
= - E eBEa{w(Eoz)}_l' 2 w(veﬁ VEanz)-

Noting that V(g g, E, does not contribute to the curvature Ry(e,,eg), as
[Ey, Eglx € Ly, we obtain (1). As for (2), we have

(OY) ) (Epsts o En) = Y{(0(Epy1seees En)}— % V(Epits s LY, Eql,eovy Ey)
=— % go(wlY, Ey], Ey)
= § go(Ve Y, Ey)
=3 (V@) (Ee)

= _63"‘”
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while the second equality is immediate. Using (2), the left-hand side of (3) can
be rewritten as

2 _ 1 _ 1 _
|6*w|*— = divg V- (6*w, g0) + — (divg ) = [6*w|*— — (divp ¥)?,
q q q
and (3) follows. ]

4. Proof of Theorems A and B. We first observe that Y is transversally Killing
if and only if 6*w =0, Y is transversally Jacobi if and only if trace VZw + py(w) =0
(by duality), and Y is transversally divergence-free if and only if 6gw=0. The
equivalence of (i) and (ii) in Theorem A follows readily from Theorem D. As
shown in [4], (i) = (iii). It therefore suffices to prove (iii) = (ii). We use the char-
acterization of transversally affine infinitesimal automorphisms by the identity

VyAv(Y)=Ry(Y,V), VelQ,

where Ay(Y): Q — Q is given by the difference 6(Y)— Vy (and depends only on
Y, see [4]). Evaluating this identity for V' = E, and summing over «, we obtain
—trace V2Y = py(Y), which is precisely the Jacobi condition. It remains to show
divg Y =0. By Theorem C, it suffices to show that divg Y is a constant function.
Since divp ¥ € Q3(F), it remains to verify that eg divg Y=0, B=p+1,...,n. In-
deed, we have

eg divg Y=¢5 {2 g0(Ve, Y, Ea)}
=3 20(Ve, Vi, Y, Ea)
= — 2 gQ((VeﬁAV(Y))(Ea)yEa)

=—2 gQ(RV(Yxs eg)eq; €q)
=0,

which completes the proof of Theorem A.

To prove Theorem B, we first note that the transversal conformality condition
translates to 26*w = 0-go. By (2) and (gg, gp) = g, this identity is further equiva-
lent to 6*w=1/q divg Y-go. Applying é to both sides, and observing that the
holonomy invariance of g implies 6go =0, we have

1 _ 1 - 1
00*w=—06(divg Y-g2p)= — —dg(divg Y) = —dpbpw.
p BY-8o p g(divg Y) 7808

For g =2, this reduces (1) to the Jacobi condition for ¥. Assuming conversely
the Jacobi condition for Y, we have, again by (1), 266*w = dpégw. Taking the
global scalar product with w, we obtain

2]6*w|?— | divy 7> =0.
For g =2, identity (3) implies the transversal conformality of Y. ]
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5. Examples. (1) Given a compact oriented Riemannian manifold M with pos-
itive semidefinite Ricci tensor, the Albanese (Jacobi) map J: M — A(M) is the
totally geodesic projection of a fibre bundle over the flat Albanese torus A(M),
of dimension equal to the first Betti number of M [8; 12]. From the geometric
properties of this bundle it follows that the linear space of parallel vector fields
on M is isomorphic (via J,) with the linear space of parallel vector fields on M.
By Theorem A, this space is further isomorphic with the linear space of transver-
sal divergence-free Jacobi automorphisms of the corresponding harmonic Rie-
mannian foliation.

(2) By Theorem B, the linear space of transversal Jacobi automorphisms of
the harmonic Hopf fibration f: S* — S? is isomorphic with the linear space of
infinitesimally conformal fields on S2, in particular, it is 6-dimensional. Note
further that the nullity of f as a harmonic map equals 8 [13].
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