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Abstract. S.-S. Chern raised the question of determining those compact
3-manifolds M admitting a contact metric structure whose characteristic
vector field generates a one-parameter group of isometries. S. Tachibana
showed that the first betti number of these spaces must be even, and H.
Sato proved that the second homotopy group of M is zero unless M is
homotopy equivalent to SλxS2. A. Weinstein pointed out that M is a
Seifert fibre space over an orientable surface. In this paper, it is shown
as a consequence of a more general theorem that if, in addition, the
scalar curvature is suitably bounded below by a negative constant, then
the metric may be deformed to a metric of positive constant sectional
curvature. Thus, if the manifold is simply connected it is diffeomorphic
with the 3-sphere.

1. Introduction. Lutz and Martinet [6] showed that every compact
and oriented 3-manifold M possesses a contact structure, that is, M
carries a globally defined 1-form ω with ω Λ dω Φ 0 everywhere. One
can associate with ω a vector field Xo (determined by ω(X0) = 1 and
dω(X0, •) = 0), a linear transformation field φ (which is a complex struc-
ture on 5 = kerω, and has kernel RX0) and a Riemannian metric g
(with respect to which φ is skew-symmetric and ω = g(XQ, •))• The
resulting contact metric structure (φ, Xo, ω, g) is said to be K-contact if
Xo is a Killing field with respect to g. Chern and Hamilton [3] introduced
the torsion invariant c = |τ|, where τ = LXog is the Lie derivative of g
with respect to XQ, and conjectured that for fixed ω, with Xo inducing
a Seifert foliation, there exists a complex structure φ\B on B such that
the 'Dirichlet energy'

= -M C2V0l(M,flr)

is critical over all CR-structures. Should this conjecture be true, VXQZ

must vanish, or equivalently, the sectional curvature of all planes at a
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given point perpendicular to B are equal (cf. [3]). The torsion τ is then
said to be critical.

We now state our main result.

THEOREM. Let M be a compact oriented ^-manifold with contact
metric structure (φ, XQ, ω, g) and critical torsion. If there exists a
constant a, 0 < a < 1, such that c < 2a and

where σ = (cXoS)\B, S denotes the Ricci tensor and r the scalar curvature,
then M admits a contact metric of positive Ricci curvature. If, in
addition, M is simply connected, it is dijfeomorphic with the ̂ -sphere.

COROLLARY. Let Mbe a compact oriented S-manifold with K-contact
metric structure (φ, Xo, ω, g). If r > — 2, then M admits a contact
metric of positive Ricci curvature.

If the torsion invariant c is critical, the Webster curvature (cf. [3])
W = ( r + 4)/8 is independent of c, and the condition r > — 2 is equivalent
to W > 1/4.

An analogous result restricting the Ricci curvature of g was obtained
in [4].

We record our thanks to J.-P. Bourguignon for stimulating conversa-
tions on the subject.

2. Contact manifolds. A (2n + l)-dimensional C°° manifold is called
a contact manifold if it carries a global 1-form ω with the property
that ω A (dω)n Φ 0 everywhere. It has an underlying almost contact
metric structure (φ, Xo, ω, g), that is,

ω(X0) = l, 9^o=O, φ2= -I+ω(g)X0, ω = g(X0, ), g(φX,Y)=-g(X,φY) ,

where / is the identity transformation. Moreover,

g(X, φY) = dω(X, Y).

If the almost complex structure J on MxR defined by J(X9 fdjdt) ~
(φX — fX0, o)(X)d/dt), where / is a real-valued function, is integrable,
the contact structure is said to be normal. In this case, Xo is a Killing
vector field, that is τ = 0. Conversely, if n = 1, and Xo is a Killing
field, then M is normal.

We introduce the <p-torsion ψ which is closely related to τ. It is
defined by ψ(X, Y) = g((LXoφ)X, Y), and is known to be symmetric
(cf. [2]).
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PROPOSITION 1. ( i ) τ(X0, •) = ψ(X0, 0 = 0,

(ii) φ(X, Y) = -τ(X, <pY), or equivalents, τ(X, Y) = ψ(X, φY),
X, YeC-(TM).

(iii) φ is symmetric with respect to both τ and ψ,
(iv) τ(φX,φY)=-τ(X,Y)andf(φX,φY)=-ψ(X,Y),X,YeC"(TM),
( v ) trace τ = trace ψ = 0,
(vi) τ(X, Y) = jr(φ1/2X, φ1/2Y), X, YeC"(TM),
(vii) |τ| = \f\{ = c).

PROOF. ( i ) For contact metric structures, VXoXo = 0 (cf. [2]).
Hence,

τ(X0, X) = (LXog)(Xo, X) = X0- g(X» X) - g(X0, [Xo, X]) =

l X o ) - 0 , XeC"(TM) .

The statement for ψ follows from (Lx<jφ)X0 = 0.

( ii ) τ(X, φY) = (LZlfl)(X, φY) = X0' 9(X, φ Y)

- g([X0, X], φY)- g(X, [Xo, ψY])

= Xo • g(X, φY)- g(lX» X], φ Y)

- g(X, φ[X0, Y]) - ΉX, Y) .

On the other hand, (dω)(X, Y) = g(X, φY), so

(Lxμω)){X, Y) = Xo (dω)(X, Y) - dω([X0, X], Y) - dω(X, [Xo, Y])

= Xo • g(X, φY)- g([X0, X], φY) - g(X, φ[X0, Y])

which vanishes since LXo(dω) = 0.
(iii) Follows directly from (ii) since τ and ψ are symmetric in their

arguments.
(iv) By repeated application of (ii), we obtain

τ(φX, φY)= -HφX, Y) = -ψ{Y, ΨX) = -τ(Y, X) = -τ(X, Y) .

A similar proof holds for ψ.
(v) Choosing a φ-basis {E\ φE\ X0}"=u

trace τ = Σ τ{JE?, E*) + ± τ(φE\ φW) + τ(X0, Xa) = 0

by (i) and (iv).
(vi) By (i), we may assume that X, Ye C°°(B)f B = ker ω. Since

{I + φ)lVΎ on By

, φ1/2Y) = \ψ{X +φX,Y+φY) = f(X, φY) = τ(X, Y)
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by (ii)-(iv).
(vii) Follows from (vi) since φ1/2 is an isometry on B.
The integrability tensor Nω occurring in the normality condition for

contact metric structures in [2] is given by

Nω(X, Y) = [φ, φ](X, Y) + 2dω(X, Y)X0 , X, YeC~(TM) ,

where [φ, φ] is the Nijenhuis torsion of φ. For fixed XeC°°(TM), we
consider the 2-tensor μz on M defined by

μx{ Y, Z) = g(N*(X, Y), φZ) , Y, Z e C"( TM) .

Clearly, μz( , Xo) = 0 and

(2) gi&jφ) Y, Z) = ^(Z, X) + g{ Y, X)ω(Z) - g(Z, X)ω( Y) ,
Δ

X, Y,ZeC"(TM)

(see [2]).

PROPOSITION 2. ( i ) μXo = —ψ,

(ii) μx(φ Y, φZ) = -μx{ Y, Z), Y, Ze C"(B), B = ker ω,
(iii) trace /ίXo = 0.

PROOF, ( i ) For Y,ZeC°°(TM),

μXo(Y, Z) = g([φ, φ](X0, Y), φZ) = g(<p*[X0, Y], ψZ) - g(φ[X0, φY\, φZ)

= g(φ[X0, Y], Z) - g([X0, φY\, Z) + ω([X0, <pY])g(X0, Z)

= -9((LXoφ)Y, Z) + ω((LXoφ)Y)g(Xo, Z) = -ψ{Y, Z) ,

since ω((LXoφ) Y) = g(X0, (LXoφ) Y) = τ(X0, Y) = 0 by (i) of Proposition 1.
(ii) By the previous step and (iv) of Proposition 1, we may assume

that XeC°°{B). Then,

μx{φY, φZ) + μx(Y, Z) = -g([φ, φ](X, φY), Z) + g([φ, φ\{X, Y), φZ)

= 0 .

(iii) As in (v) of Proposition 1, we choose a 95-basis and apply (i)
and (ii).

3. Proof of the Theorem. We first replace g by the new metric

(3) g = ag + 6α>(x)ω ,

where a,beR with a > 0, a + b > 0. Then, the corresponding Ricci
tensors S and S are related by the formula

(4) S = S-— g + -^-[(2n
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A-Ψ + —JL
+ b 2(α +

To see this, let W be the tensor field defined by W% = Γ% - Γ%. Then,
by (3),

a Δ(a + 0)

where τjk — V^k + Vkωά (see [4]). Now,

Sjk - Sjk = mάkί - R\m = V,T7;fc - VfcW£ + IFλW^ -

a

2(α + 6) α2 α(α + 6)

where we used div Xo = trace Vα> = (l/2)trace τ = 0 (by (v) of Proposition
1), Proposition 1 (ii), as well as various well-known identities for contact
metric structures. Since

we obta in

Sjk - S i f c = - A
α

2
6) α2 α V 2(α + 6)

To simplify t h e t e r m s in {•••}, we use (2) and t h e proper t ie s of μz g iven
in Proposi t ion 2. T h u s ,

{•••} = γft) f c t r a c e μd/dχj + - l ^ t r a c e μ3/dχk - y

\ 2gjk - 2(2n + l)ωόωk
Δ

= fjk + 2gΛ - 2(2n + l)ωάωk.

To see this, we first re-write formula (2):

(2') ff((V5/,,i^)3/3a;ί, d/dx") = ^-μw
Δ

that is,
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Li

where μjki = μd/Sχi(.d/dxk, djdx1), from which

It follows that

1 1
Q>kV&-i — —(Okg

ιsμd/dχ3ίd/dx% d/dxι) — 2na)jQ)k = —ω k t race^ 9 / 3 a .y — 2nω3ωk ,

and

- 1 y ,

from which {•••} follows. This yields (4).

Now, consider the case n = 1, and assume that τ is critical, i.e.

Vχoτ = 0. Then, choosing 6 = α2 — α, (4) reduces to

( 5 ) S - S + 2(1 - a)g + 2(α - l)(α + 2)ω (x) ft> + α " 1 ^ .
a

To ensure that S > 0 we determine, at each point xeM, the entries of
the matrix of the r.h.s. of (5) with respect to a suitable φ-basis
{E, φE, Xo} of TXM, and compute the respective subdeterminants along
the main diagonal. First, assume that σxΦθ and choose
\E\ = 1, such that σ(φE) = \σ\. Then,

, Xo) - 2(1 - α2) = 2(α2 - -^

since

by [2]. Since τ is critical,

g(R(E, Xo)Xo, E) =

This implies that S(E, E) = S(^£7, ̂ .£7), and by polarization, S(E, φE) = 0.
It follows that

5?) - S ( ^ ,

Hence,
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\φE)

{E, φE) S(φE, φE)

0 \σ\

371

where

and

§(E, E) = — + —
2 4

- 2α -

S(φE, , E) ,

Now, we claim that c < 2a together with (1) ensures that S > 0 at x e M.
Indeed, since c2 = ψ(E, Ef + ψ(E, φE)2, the subdeterminants along the
main diagonal of S can be estimated as

S(E, E)§(φE,

and

^(2- + £ + l-2a + l—-Zt
\2 4 a

x

For σx = 0 we choose an arbitrary φ-basis, and apply the above argument.
Finally, the last statement is a consequence of Hamilton [5].

REMARK. It is not difficult to see that
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O = -—(δψ)oφ\B
Li

and

tzjδφ = 0 ,

where δ:S2T*M-^ T*M is the Berger-Ebin differential operator (cf. [1])
given by (δψ)X = trace Vψ(X, •; •), XeC°°(TM), and S2 is the symmetric
square. Clearly, σ = 0, if and only if ^ = 0. This is the case for K-
contact metric structures. In general, by the Berger-Ebin decomposition
theorem, we have the orthogonal splitting

Ψ = Ψo + Lzg ,

where ZeC°°(TM) and δψ0 = 0. Thus, δα/r = 0 means that in the space
^f of all Riemannian metrics on M, the tangent vector <f e Tg^t is
perpendicular to the orbit of g under the group of diffeomorphisms of M.
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