GABOR TOTH

ON CLASSIFICATION OF ORTHOGONAL
MULTIPLICATIONS
A LA DO CARMO-WALLACH

ABsTRACT. The space of range-equivalence classes of full orthogonal multiplications
F:R" x R" > R?, n < p <n? is shown to be a compact convex body lying in so(n) ® so(n).
Furthermore, the dimension of the space of equivalence classes is determined to be
(n?*(n — 1)?)/4 — n(n — 1).

1. INTRODUCTION

A fundamental problem is constructive harmonic map theory posed by R.
T. Smith [7] is to classify orthogonal multiplications F: R”" x R" - R? ([3,
(4.6) Problem]; cf. also [1], [2], [5], [6], [8]). The connection with
harmonic maps is given by the Hopf~Whitehead construction which, when
applied to such F, gives rise to a (quadratic) harmonic map

fr 8 >8P
defined by

S p) = (Il = Y112, 2F(x, y)), x, y € RY lIx? + |Iyll* = 1.

Important examples include the various Hopf maps and, for any n,
frg §2n=1 ., §"*with Fg: R" x R" > R"™ the tensor product.

CLASSIFICATION THEOREM. The space of range-equivalence classes of
full orthogonal multiplications F:R" x R" - R?, n < p <n?, can be para-
metrized by a compact convex body L, lying in a finite dimensional vector
space E,. As an SO(n) x SO(n) module (induced by precomposition) E, is
isomorphic with so(n) ® so(n) (given by Ad ® Ad). For n 2 3, it has finite
principal isotropy type. In particular, the space of equivalence classes of
orthogonal multiplications (=L, /SO(n) x SO(n)) is of dimension (n*(n —
1)?)/4 — n(n — 1).

REMARKS 1. As shown by Parker [6], for n = 2, Lis a line segment with
boundary points corresponding to the Hopf map and its dual. In fact, a
complete classification of full quadratic harmonic maps of §° into S"
2<n<3yg, is given in [10], [11]. Moreover, as in [6], for n =3,
dim(L;/SO(3) x SO(3)) = 3 can be obtained by explicit computation.

2. Besides the Hopf~Whitehead method, one can construct quadratic
harmonic maps f:S*"~! —» S? from orthogonal multiplications F;: R" x
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R" > R%, i=1,...,6, by

06y, u,0) = (IxI1* + 1yl = lull® = llo]12,
2F (x,u), 2F,(x, v), 2F 3(y, u), 2F 4(p, v)).

and

1061, 0) = (612 = i3, Il = |Ioll?, 2F 4 (x, ),
V2 Fy(x,u), /2 F4(x, v), /2 Foly, u),
V2 Fs(y,0), 2F (u,0), x, y, u, v€ R™, |x|I>+ 0117 + [lull® + [Iy|? = 1.

3. With respect to the cell structure of the parameter space L° of
equivalence classes of full harmonic maps of spheres with (fixed) constant
energy density, the parameter space L given in the theorem above can be
shown to compose a cell on JL° [11].

2. PROOF OF THE CLASSIFICATION THEOREM

Recall first that an orthogonal multiplication is a bilinear map
F:R" x R" — R? satisfying |[F(x, y)|| = lIx]*1|¥ll, x, yeR". If F is full, ie.
surjective, then we have n <p <n? Two orthogonal multiplications F,
F':R" x R" > R? are said to be equivalent if F(Vx, Wy)=UF'(x,y), x,
‘yeR", holds for some V, WeSO(n) and UeO(p). F and F’ are range-
equivalent if they are equivalent with V = W = [ (=identity).

Turning to the proof of the theorem, let F:R" x R" - R” be a full
orthogonal multiplication. By the universal property of the tensor product,
there exists a unique (p x n?)-matrix 4 of maximal rank such that
F=A-Fg. Now, for x, ye R", we have

llx @ yiI? = [Ix]1*-Iyl1? = [IF(x, p)IIP = (A" Ax B y), x By
= (A4, (x B y)*),

or equivalently,
<AtA - Inza(x ®y)2> = 07

where %=(symmetric) tensor square and the scalar product is taken in
S%(R"). Putting W, =span{(x ®y)?|x, ye R"} < S¥R"™), E,= W, and
L,={CeE,|C + I, >0} (‘> symmetric positive semidefinite), we obtain
a map from the space of range-equivalence classes of orthogonal multipli-
cations into L, which sends the class of F to A'A — I,z€ L,. This correspon-
dence is easily seen to be bijective onto L (in fact, the inverse is given
by associating to C€ L, the orthogonal multiplication F = /C + [,2- Fg).
With respect to the standard base {e;® e;}] < R"® R", for a sym-

i,j=1
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metric endomorphism C of R”® R", we have the polynomial expansion

(Cx® »), x y>= Z Cijklxiijkyl:

Lk I=1

where

x=Y xe,y= ye; and ¢ =<{Cle;®c¢), ¢, Dep).

i=1 j=1

Comparing coefficients, we obtain that Ce E, is equivalent to the double
skew-symmetry of ¢;;; in i, k and j, I. Thus, E, = so(n) ® so(n) with an
isomorphism which, in fact, respects the SO(n) x SO(n) module structures
on E, and so(n) ® so(n). Assume now that the connected principal isotropy
type (Hgn) 1s nontrivial. For n # 4, E, 1s irreducible and by a result of Wu-Yi
Hsiang ([4, pp. 93-941), we have

(Hg") = (HI(:“),,ISO(n)x{l}) X (Hgn\{l}xso("))‘
As SO(n)-modules,

E,ISO(n) x {1} = E,|{1} x SO(n)

xs50(n) @ --- Dson) <ﬁ(nz;l) times)

and since the generic intersection of n(rn — 1)/2 maximal tori is finite, we
obtain a contradiction. For n = 4, we first split E, = so(4) ® so(4) into four
irreducible components and then apply the argument above.
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