ON CLASSIFICATION OF ORTHOGONAL MULTIPLICATIONS
 À LA DO CARMO-WALLACH

AbSTRACT. The space of range-equivalence classes of full orthogonal multiplications $F: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}, n \leqslant p \leqslant n^{2}$, is shown to be a compact convex body lying in so $(n) \otimes$ so (n). Furthermore, the dimension of the space of equivalence classes is determined to be $\left(n^{2}(n-1)^{2}\right) / 4-n(n-1)$.

1. Introduction

A fundamental problem is constructive harmonic map theory posed by R . T. Smith [7] is to classify orthogonal multiplications $F: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ ([3, (4.6) Problem]; cf. also [1], [2], [5], [6], [8]). The connection with harmonic maps is given by the Hopf-Whitehead construction which, when applied to such F, gives rise to a (quadratic) harmonic map

$$
f_{F}: S^{2 n-1} \rightarrow S^{p}
$$

defined by

$$
f_{F}(x, y)=\left(\|x\|^{2}-\|y\|^{2}, 2 F(x, y)\right), x, y \in \mathbb{R}^{n},\|x\|^{2}+\|y\|^{2}=1 .
$$

Important examples include the various Hopf maps and, for any n, $f_{F_{\otimes}}: S^{2 n-1} \rightarrow S^{n^{2}}$ with $F_{\otimes}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n^{2}}$ the tensor product.

CLASSIFICATION THEOREM. The space of range-equivalence classes of full orthogonal multiplications $F: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}, n \leqslant p \leqslant n^{2}$, can be parametrized by a compact convex body L_{n} lying in a finite dimensional vector space E_{n}. As an $\mathrm{SO}(n) \times \mathrm{SO}(n)$ module (induced by precomposition) E_{n} is isomorphic with $\mathrm{so}(n) \otimes \operatorname{so}(n)(g i v e n ~ b y ~ A d \otimes A d)$. For $n \geqslant 3$, it has finite principal isotropy type. In particular, the space of equivalence classes of orthogonal multiplications $\left(=L_{n} / \mathrm{SO}(n) \times \mathrm{SO}(n)\right)$ is of dimension $\left(n^{2}(n-\right.$ $\left.1)^{2}\right) / 4-n(n-1)$.

REMARKS 1. As shown by Parker [6], for $n=2$, Lis a line segment with boundary points corresponding to the Hopf map and its dual. In fact, a complete classification of full quadratic harmonic maps of S^{3} into S^{n}, $2 \leqslant n \leqslant 8$, is given in [10], [11]. Moreover, as in [6], for $n=3$, $\operatorname{dim}\left(L_{3} / \mathrm{SO}(3) \times \mathrm{SO}(3)\right)=3$ can be obtained by explicit computation.
2. Besides the Hopf-Whitehead method, one can construct quadratic harmonic maps $f: S^{4 n-1} \rightarrow S^{p}$ from orthogonal multiplications $F_{i}: \mathbb{R}^{n} \times$

$$
\begin{aligned}
& \mathbb{R}^{n} \rightarrow \mathbb{R}^{p_{i}}, i=1, \ldots, 6, \text { by } \\
& \qquad \begin{aligned}
f(x, y, u, v)= & \left(\|x\|^{2}+\|y\|^{2}-\|u\|^{2}-\|v\|^{2},\right. \\
& \left.2 F_{1}(x, u), 2 F_{2}(x, v), 2 F_{3}(y, u), 2 F_{4}(y, v)\right) .
\end{aligned}
\end{aligned}
$$

and

$$
\begin{aligned}
& f(x, y, u, v)=\left(\|x\|^{2}-\|y\|^{2},\|u\|^{2}-\|v\|^{2}, 2 F_{1}(x, y),\right. \\
& \sqrt{2} F_{2}(x, u), \sqrt{ } 2 F_{3}(x, v), \sqrt{2} F_{4}(y, u), \\
&\left.\sqrt{2} F_{5}(y, v), 2 F_{6}(u, v)\right), x, y, u, v \in \mathbb{R}^{n},\|x\|^{2}+\|y\|^{2}+\|u\|^{2}+\|y\|^{2}=1 .
\end{aligned}
$$

3. With respect to the cell structure of the parameter space L^{0} of equivalence classes of full harmonic maps of spheres with (fixed) constant energy density, the parameter space L given in the theorem above can be shown to compose a cell on $\partial L^{0}[11]$.

2. Proof of the classification theorem

Recall first that an orthogonal multiplication is a bilinear map $F: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ satisfying $\|F(x, y)\|=\|x\| \cdot\|y\|, x, y \in \mathbb{R}^{n}$. If F is full, i.e. surjective, then we have $n \leqslant p \leqslant n^{2}$. Two orthogonal multiplications F, $F^{\prime}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ are said to be equivalent if $F(V x, W y)=U F^{\prime}(x, y), x$, $y \in \mathbb{R}^{n}$, holds for some $V, W \in \mathrm{SO}(n)$ and $U \in \mathrm{O}(p) . F$ and F^{\prime} are rangeequivalent if they are equivalent with $V=W=I_{n}$ (=identity).

Turning to the proof of the theorem, let $F: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$, be a full orthogonal multiplication. By the universal property of the tensor product, there exists a unique ($p \times n^{2}$)-matrix A of maximal rank such that $F=A \cdot F_{\otimes}$. Now, for $x, y \in \mathbb{R}^{n}$, we have

$$
\begin{aligned}
\|x \otimes y\|^{2} & =\|x\|^{2} \cdot\|y\|^{2}=\|F(x, y)\|^{2}=\left\langle A^{t} A(x \otimes y), x \otimes y\right\rangle \\
& =\left\langle A^{t} A,(x \otimes y)^{2}\right\rangle,
\end{aligned}
$$

or equivalently,

$$
\left\langle A^{t} A-I_{n^{2}},(x \otimes y)^{2}\right\rangle=0,
$$

where ${ }^{2}=$ (symmetric) tensor square and the scalar product is taken in $S^{2}\left(\mathbb{R}^{n 2}\right)$. Putting $W_{n}=\operatorname{span}\left\{(x \otimes y)^{2} \mid x, y \in \mathbb{R}^{n}\right\} \subset S^{2}\left(\mathbb{R}^{n 2}\right), E_{n}=W_{n}^{\perp}$ and $L_{n}=\left\{C \in E_{n} \mid C+I_{n^{2}} \geqslant 0\right\}\left({ }^{*} \geqslant\right.$ ' symmetric positive semidefinite), we obtain a map from the space of range-equivalence classes of orthogonal multiplications into L_{n} which sends the class of F to $A^{L} A-I_{n^{2}} \in L_{n}$. This correspondence is easily seen to be bijective onto L (in fact, the inverse is given by associating to $C \in L_{n}$ the orthogonal multiplication $\left.F=\sqrt{C+I_{n}} \cdot \cdot F_{\otimes}\right)$. With respect to the standard base $\left\{e_{i} \otimes e_{j}\right\}_{i, j=1}^{n} \subset \mathbb{R}^{n} \otimes \mathbb{R}^{n}$, for a sym-
metric endomorphism C of $\mathbb{R}^{n} \otimes \mathbb{R}^{n}$, we have the polynomial expansion

$$
\langle C(x \otimes y), x \otimes y\rangle=\sum_{i, j, k, l=1}^{n} C_{i j k l} x_{i} y_{j} x_{k} y_{l},
$$

where

$$
x=\sum_{i=1}^{n} x_{i} e_{i}, y=\sum_{j=1}^{n} y_{j} e_{j} \quad \text { and } \quad c_{i j k l}=\left\langle C\left(e_{i} \otimes e_{j}\right), e_{k} \otimes e_{i}\right\rangle .
$$

Comparing coefficients, we obtain that $C \in E_{n}$ is equivalent to the double skew-symmetry of $c_{i j k l}$ in i, k and j, l. Thus, $E_{n} \cong \operatorname{so}(n) \otimes \operatorname{so}(n)$ with an isomorphism which, in fact, respects the $\mathrm{SO}(n) \times \mathrm{SO}(n)$ module structures on E_{n} and so $(n) \otimes \operatorname{so}(n)$. Assume now that the connected principal isotropy type ($H_{E_{n}}^{0}$) is nontrivial. For $n \neq 4, E_{n}$ is irreducible and by a result of Wu-Yi Hsiang ([4, pp. 93-94]), we have

$$
\left(H_{E_{n}}^{0}\right)=\left(H_{E_{n} \mid S O(n) \times\{1\}}^{0}\right) \times\left(H_{E_{n}\{1\} \times S O(n)}^{0}\right) .
$$

As $\mathrm{SO}(n)$-modules,

$$
\begin{aligned}
E_{n} \mid \mathrm{SO}(n) \times\{1\} & \cong E_{n} \mid\{1\} \times \operatorname{SO}(n) \\
& \cong \operatorname{so}(n) \oplus \cdots \oplus \operatorname{so}(n)\left(\frac{n(n-1)}{2} \text { times }\right)
\end{aligned}
$$

and since the generic intersection of $n(n-1) / 2$ maximal tori is finite, we obtain a contradiction. For $n=4$, we first split $E_{4} \cong$ so(4) \otimes so(4) into four irreducible components and then apply the argument above.

REFERENCES

1. Adem, J., 'Construction of some Normed Maps', Boll. Soc. Mexicana 2 (1975), 59-75.
2. Baird, P., Harmonic Maps with Symmetry, Pitman, 1983.
3. Eells, J. and Lemaire, L., 'Selected Topics in Harmonic Maps', CBMS Reg. Conf. Ser. 50, 1980.
4. Hsiang, Wu-Yi., Cohomology Theory of Topological Transformation Groups, Springer, 1975.
5. Lam, K. Y., 'Construction of Nonsingular Bilinear Maps', Topology 6 (1967), 423-426.
6. Parker, M., 'Orthogonal Multiplications in Small Dimensions', Bull. London Math. Soc. 15 (1983), 368-372.
7. Smith, R. T., 'Harmonic Mappings of Spheres', Thesis, Warwick Univ., 1972.
8. . 'Harmonic Mappings of Spheres', Amer. J. Math. 97 (1975), 364-385.
9. Toth, G. and D'Ambra, G., 'Parameter Space for Harmonic Maps of Constant Energy Density into Spheres', Geom Dedicata 17 (1984), 61-67.
10. Toth, G., 'On Classification of Quadratic Harmonic Maps of S^{3} ' (to appear).
11. . 'Classification of Quadratic Harmonic maps of S^{3} into Spheres' (to appear).

Author's address:
G. Toth,

Rutgers University
Department of Mathematics
Camden, NJ 08102
U.S.A.

