
P H I L I P P E  T O N D E U R *  AND G A B O R  T O T H  

O N  T R A N S V E R S A L  I N F I N I T E S I M A L  

A U T O M O R P H I S M S  F O R  H A R M O N I C  F O L I A T I O N S  

ABSTRACT. In this paper we consider a harmonic Riemannian foliation .:~, and study the 
transversal infinitesimal automorphisms of .~ with certain additional properties like being 
transversal conformal or Killing (=  metric). Such automorphisms (modulo Killing automor- 
phisms) are related to the stability of .~.  A special stud)' is made for the case of a foliation with 
constant  transversal scalar curvature, and more particularly with transversal Ricci curvature 
proportional to the transversal metric (Einstein foliation). 

1 . I N T R O D U C T I O N  

Let ,~ be a transversally oriented foliation on a compact oriented 
Riemannian manifold (M, gM). It is given by an exact sequence of vector 

bundles 

O-* L--* TM -~-- ~ Q ~ 0 ,  

where L is the tangent bundle and Q the normal bundle of ~ .  We have an 
associated exact sequence of Lie algebras 

0 --* FL--* V(ff) .... ~'-~VQL--. O, 

where V(,~) denotes the algebra of infinitesimal automorphisms of ,~ ,  and 

FQ ~ the portion of VQ invariant under the action of L by Lie derivatives 

([5], [12]). The foliation is assumed to be Riemannian with bundle-like 
metric gM, and holonomy invariant induced metric g¢ on Q ~ L ~. The 
unique metric and torsion-free connection in Q is denoted by V ([4], [12]). 
Associated to V are transversal curvature data, in particular, the (transver- 
sal) Ricci operator pv:Q ~ Q  and the (transversal),scalar curvature Cv= 
trace pv ([5]). In this paper we study geometric properties of infinitesimal 
automorphisms YeV(~). For YeV(~)  the transversal part g(Y) of Y is also 
denoted by )" and t,j will stand for the basic 1-form associated to ~' by (g0) 
duality. 

Recall that the basic forms are given by 

~ = { ~ e ~ ' ( M ) [ i ( X ) t o = O , ® ( X k o  = 0  for all X • Y L } .  

The exterior differential d restricts to ds: ~ ;  ~ ~ +  1. The adjoint of dR, with 
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respect to the induced ,scalar product ( , ) B  on fiB, is denoted by 6B: f ~  
Q~-I and we then have the (basic) Laplacian A s = f B d B +  dB6B. The 
relation expressing 6n in terms of V involves the mean curvature form of ,~  
which, in this paper, we assume to be zero. In other words, ,~ is assumed to 
be harmonic, i.e. all leaves of ~ are minimal ([4]). 

By [8], [9], the De Rham-Hodge decomposition generalizes to a decom- 
position 

~ ~ i m d B O  i m f B O  ,Yt°~, 

into mutually orthogonal subspaces, with finite dimensional space of har- 
monic basic forms ~ ;  = kerAB. 

In [10] the operators 6",6 occurring in the Berger-Ebin decomposition 
[2] were generalized to the foliation context. 

6": FQ* ~ FS2Q *, S 2 = symmetric square, 

is given by 

(6*09)(V, W) = ½{(VvoJ)(W) + Vwo))(V)}, coe FQ*, V, W~FQ. 

It maps the basic 1-forms f2,~ c FQ* to basic symmetric 2-forms, i.e. those 
killed by i(X), ®(X) for all X~FL.  For the present purpose it suffices to 
know that 6: FS z Q* ~ FQ* defined in [10] restricts on basic forms to the 
adjoint of 6". The fundamental identities for Y~V(~)  and a~ = go-dual of ~', 
in the case of a harmonic Riemannian foliation i f ,  are then 1[10]) 

(1.1) 266*09 = - trace VEto - pv(¢o) + dBfiB¢o, 

(1.2) divBY = - 6 ~ o  = (6*¢~,go), 

(1.3) 16"¢o - ~ divBY.g0l 2 = la*col z - {(divB~') 2, q = codim ~ .  

Let YeV(,~). Then ~" is divergence free if divBY = 0, a transversal Jacobi 

automorphism if Yeker Jr, where Jv = - t r a c e  V 2 - p v  is the Jacobi 
operator, a transversal Killing automorphism if ®(Y)go = 0 and transversal 

conformal if ®(Y)go = Ia" 9o for some basic function/~. These properties can 
be equivalently expressed in terms of the go-dual 09 by 6noJ = 0, trace 
Vzco + pvgo ) =0 ,  6"co = 0  and 6*o9 =--(I/q)fBeO'gQ, respectively ([10]). 
This motivates the introduction of the following concept. 

2.a- AUTOMORPHISMS 

Given Y~ V(,~), ~" is said to be a a-automorphism for a ~ R if (the gQ-dualko 
satisfies 

(2.1) - t r a c e  V2¢o - Or(W) + a dB6BOJ = 0, 
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or equivalently, 

(2.2) ABo - 2pv(~o) + a dB6Ato = 0, 

where we use the Bochner-WeitzenbOck formula An¢o = - t r a c e  
V2~ + pv(o~). 

2.3. EXAMPLE. By (1.1) and (1.2), for Y6V(,~).  Y is transversal Killing iff 

~" is a divergence-free Jacobi automorphism. Hence, a transversal Killing ~" 
is a a-automorphism for all cr ~ R. Moreover, a a-automorphism is transver- 
sal Killing iff it is divergence free. 

2.4. EXAMPLE. The transversal Jacobi automorphisms are precisely the 0- 
automorphisms of ,~. 

2.5. EXAMPLE. The transversal conformal automorphisms are the 

( 1 -  2/q)-automorphisms of .~. Indeed, ~" is conformal iff 6"~o = -  

(1/q)6Ro.g~. Applying 3 we get 6 3 " o  = (1/q)dB/~Bo~. Conversely, this 
identity implies conformality since, by (1.3), 

I1~*~ - ~div.F'gQII z = 115"¢~112 - ~116~oll z = 
= ( 3 3 " o ,  t o )  - ~ (dB6#o,  co) = 0 

and conformality follows. Now the claim is a direct consequence of (1.1). 

2.6. EXAMPLE. The transversal projective automorphisms are precisely the 
- of ~ .  ( 2/(q + 1))-automorphisms 

For a E ~, we introduce the vectorspace 

{a-automorphisms} 
A t , =  

{transversal Killing automorphisms} 

and define 

Y~ = { a e R l A ,  -~ {0}}. 

2.7. THEOREM.  Let ,~ be a transversally oriented harmonic Riemannian 
foliation on a compact oriented Riemannian manifold M. l f  ,~ is stable, then 
Y,<O. 

Proof A harmonic foliation is a critical point of the energy functional 
1 I'C 2 E(~)=~-SM [ [ .vol(M)([4]). The second variation for E for a special 

variation ~ ,  o f ~  o =,,~ given by X eFQ is, according to [5], given by 

#z 
a t  2 E ( , ~ , ) , = o  = (JvX,  X }. 

.~- is stable if ( JvX ,  X )  >10 for all X e F Q .  Now assume that ? is a a- 
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automorphism for 6 > O. Then we have 

( J r  ~', ~ ' )  = - - o ' ( d ~ H ~ , ( ~  ) = -~116~112 < 0 ,  

where ~o = ge-dual of ~'. It follows that ~" is divergence free and hence 

Killing, i.e. a ¢ E. 

2.8. EXAMPLE.  The  instability of harmonic foliations on S"(n > 2) with 
q > 2 was proved in [6].  

2.9. EXAMPLE.  I f~-  has a dense leaf in M then Y = Q. Indeed, if ~" is a a- 
au tomorphism then the function divB}' is basic and hence constant  on M. 
By the transversal divergence theorem ([10]) SM divB~', vol(M) = 0 and ~" is 

divergence free, hence Killing. 

2.10. T H E O R E M .  Let ,~ and M be as in Theorem 2.7 and assume that the 

transversal scalar curvature c v is constant: 

(i) ifcv > O, then Y. > - 1; 
(ii) /fcv ~< 0, then Z ~< - 1 (similarly, with sharp inequalities). 

Proof. We show (i), the proof  of (ii) being analogous. Let Cv > 0 and 
a e Z and choose a a -au tomorphism ~" with d i v s ~  ~ 0. Equat ion (2.2)can 

be rewritten as 

(1 + a)AB~o -- 2pv((o) -- a 6 B d ~  = 0. 

Applying go we have 

(1 + cy)A~6~t9 2~Bpv(cg) 2 - = = ~-C v. Oat'/), 

where the last equality is obtained by direct computa t ion  using Cv -- const. 

Taking the global scalar product  with 6~m we get 

(1 + or) (An~iBm, c$~c.) = 2c811/~Bc9]12 > O. 

Note  that ]16~oll 2 does not vanish since otherwise Y would be divergence 

free. 
Similarly, (ABfBCO,6BtO) = (6~dBcSBOO, fnCO) = [IdA6HcoII 2 > 0 since 

otherwise (dofBco, c o ) =  II,~B~-II 2 = 0  would follow. Thus  a > - I ,  which 
completes the proof. 

3. T R A N S V E R S A L L Y  EINSTEIN F O L I A ' I I O N S  

,~ is said to be transversally Einstein if p v - - ( 2 / 2 ) i d e : Q - " Q  for some 
,:.eg~. In particular, cv = (2 /2k /=  const, and, by the previous theorem, for 
). ~< 0, all transversal Jacobi, conformal  and projective automorphisms are 

Killing, provided that q >/2. 
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3.1. T H E O R E M .  Let the harmonic Jbliation ,~ be transversally Einstein with 

). > O. Then Z c [ - 1, 1 - (2/q)]. I f  Y. is infinite then it Jorms a decreasin 9 

sequence converqin 9 to - 1 .  Moreover, for a a-automorphism ~', we have the 

decomposition 

(3.2) ~" = ~'~ + gradAp, 

where Y1 is transversal Killin 9 and p is a basic scalar which can be uniquely 

characterized as an eigenJunction of A M on M with eiqenvalue 2/(1 + a). 

Proof Z > - !  by (i) of the previous theorem. We now show that  the 
decomposi t ion  (3.2) holds for an arbi t rary a - a u t o m o r p h i s m  ?,, a • IR. In the 

present situation, (2.2) takes the form 

(3.3) AB<o - ,;,co + a dBfBco = 0. 

Consider  the De R h a m - H o d g e  decomposi t ion  of co ([9]) 

co = d ~p + 6 ~fl + rr #o, 

where p • f l o ,  fl•f~B2, and n~:E~--+ . ~  denotes the projection onto  the 

subspace of harmonic  I-forms. Substi tut ing this into (3.3) and using or tho-  

gonal i ty  we get 

ds((l  + a )Asp  - 2p) = 0, 

6 (A8/  - = - = 0 ,  

r t ~  = 0 .  

The first equat ion says that (1 + a)Asp - ;~p is constant  and so, modifying 

p with an additive constant ,  we obtain 

2 
A = i - T ;  

As A M =  A8 on basic scalars, it shows that /a is a uniquely determined 

basic ,scalar which is an eigenfunction of A ~t with eigenvalue 2/(1 + a). As 

dBp is the dual of gradRp it remains  to show that  the dual ~'n of 6Bfl is 

Killing. Now,  thc second equat ion says that  Y1 is Jacobi.  On the other  

hand, divAY 1 = --6~fl  = 0 and so Y~ is Killing. T o  complete  the proof  of 

the theorem it remains to show that Z ~< 1 - (I/q). So, let a e Z and ? a a-  
a u t o m o r p h i s m  with dual o~ ef l~ .  By (3.2) we may assume that  f,J = d~p, 

where # ( ~  0) is a basic scalar with 

). 
AMp . . . . .  p. 

l + a  
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By the Bochner-Weitzenb6ck formula 

-½A~(la~l ~ ) = IV@ 2 - (Ago, e)) + (PvO~,Co) + divBZ, 

where Z ~ V(.~) is defined by aL In the present situation, this reduces to 

(1 1 ) 
-½A~ (Ids/ll 2) = IVdB/~I 2 +~. ~ 1 +O" IdB'ul2 + divsZ" 

Integrating and using the transversal divergence theorem ([10]), we get 

(1 
0 = IIV da/al] 2 + ,4 

or equivalently, 

0 = IIV dd~ll 2 + (°" + 1 
\ 2 

1 )lldB~ll2 ' 
l + e  

_ _  _ 1 ~ IId./~ll 2. / 
where we used Ilds]~ll z =<AB]~,~> =((o-I-I)/2)IIAB~II 2. Now, by the 
Cauchy-Schwartz  inequality (on the model space o f ,~ )  

IAds/~] 2 >~ ~lAavl 2 

and we obtain 

o+, ) 
0 >/ + 7 -  - 1 IIAB~II 2. 

As IIAB~[[ z > 0, the inequality a < 1 - (2/q) follows. 

Let S p e % c  Spec(M) denote the set of positive eigenvalues of A M 
for which there exist basic eigenfunctions. Then Specs = {2k ~K~k=t with 
0 --< K < oo, which, if K = m., diverges to oe. By the previous theorem, 
Z = {crk = ( 2 / 2 k ) - 1 } ~ = t .  Moreover, A,k ~ vector space of basic eigen- 
functions of A M with eigenvalue ';-k' Note also that if ~ is given by the 
fibres of a harmonic Riemannian submersion f: M ~ N  then fY;j = fY~(N) 
and Specs = Spec (N)\{0},  K = ~c. and dimA~k = multiplicity of 2k as an 
eigenvalue for A '~. 

3.4. EXAMPLE.  If ~ is defined by the fibres of the Hopf map 
]!S 2"*t ~ C P "  then q = 2n, pv =pCP~ = 2(n + 1)id; that is, 

and 

,;~ = 4(n + 1), Spe% = {,;.k = 4k(n + k)}~=l 

n + l  t ~ 
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As X ~< 0, for n >/2, every  t ransversa l  c o n f o r m a l  a u t o m o r p h i s m  is Kil l ing.  

O n  the  o ther  hand ,  for n = 1, i.e. q = 2, we have 1 - (2/q) = a i  = 0 and  

d im  Ao = 3. 

3.5. E X A M P L E .  Let ~ be def ined by the fibres of a h a r m o n i c  R i e m a n n i a n  

s u b m e r s i o n  f :  M --, S", n >/2.  (A large class of such maps  are cons t ruc t ed  in 

[ l ] . ) T h e n  q = n, pv = p S "  = (n  - 1) id; tha t  is, 

). = 2(n - 1), S p e %  = {;-k = k ( k  + n - 1)}/,'~ 1 

and  

{ };: = ak-k(k  + n Z  1) 1 , 

(As a I = 1 - (2/q) the  b o u n d s  for Y'. in T h e o r e m  3.1 are the  best possible.) 

F o r  n ¢ 2 ,0~Y.  an d  so every t r ansversa l  J acob i  a u t o m o r p h i s m  is Ki l l ing.  

F o r  n = 2, a l  = 0 and  aga in  d i m A  o = 3. 
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