PHILIPPE TONDEUR* AND GABORTOTH

ON TRANSVERSAL INFINITESIMAL
AUTOMORPHISMS FOR HARMONIC FOLIATIONS

ABSTRACT, In this paper we consider a harmonic Ricmannian foliation &, and study the
transversal infinitesimal automorphisms of ¥ with certain additional properties like being
transversal conformal or Killing (=metric). Such automorphisms (modulo Killing automor-
phisms) are related to the stability of . A special study is made for the case of a foliation with
constant transversal scalar curvature, and more particularly with transversal Ricci curvature
proportional to the transversal metric (Einstein foliation).

1. INTRODUCTION

Let & be a transversally oriented foliation on a compact oriented
Riemannian manifold (M, g,). It is given by an exact sequence of vector
bundles

0-L->TM—- »Q -0,

where L is the tangent bundle and @ the normal bundle of #. We have an
associated exact sequence of Lie algebras

0-TL-oV(#F)-- 1500,

where V(F) denotes the algebra of infinitesimal automorphisms of #, and
Q" the portion of I'Q invariant under the action of I. by Li¢ derivatives
([5].[12]). The foliation is assumed to be Riemannian with bundle-like
metric g,, and holonomy invariant induced metric g, on Q = L* The
unique metric and torsion-frec connection in Q is denoted by V ([4], [12)).
Associated to V are transversal curvature data, in particular, the (transver-
sal) Ricci operator py:Q — Q and the (transversal) scalar curvature ¢y =
trace py ([5]). In this paper we study geometric properties of infinitesimal
automorphisms YeV(# ). For YeV (% ) the transversal part n(Y) of Y is also
denoted by ¥ and « will stand for the basic 1-form associated to ¥ by (g,)
duality.
Recall that the basic forms are given by

Qs ={weQ* (M) i(X)w =0,0(X)» =0 forall XelL}.
The exterior differential d restricts to d ;- Qf - Q3" '. The adjoint of d 4, with

* Work supported in part by a grant from the National Science Foundation.

Geometriae Dedicata 24 (1987) 229-236.
¢ 1987 by D. Reidel Publishing Company.



230 PHILIPPE TONDEUR AND GABOR TOTH

respect to the induced scalar product {, >z 0on Qj, is denoted by §5: Q% —
Q%' and we then have the (basic) Laplacian Ag = dzds + dpds The
relation expressing §; in terms of V involves the mean curvature form of &
which, in this paper, we assume to be zero. In other words, & is assumed to
be harmonic, i.e. all leaves of # are minimal ([4]).

By [8],[9], the De Rham-Hodge decomposition generalizes to a decom-
position

Qpzimd, ®imd; B #5,

into mutually orthogonal subspaces, with finite dimensional space of har-
monic basic forms #5 = kerA,.

In [10] the operators *,6 occurring in the Berger—Ebin decomposition
[2] were generalized to the foliation context.

0*: TQ* > T'§*Q* S? = symmetric square,

is given by

(@*w) (V. W) = 2{(Vv)(W) + Vyo)(V)}, ©0elQ* Vv, WelQ.
It maps the basic 1-forms Qj < F'Q* to basic symmetric 2-forms, i.c. those
killed by i(X), ©(X) for all X eI'L. For the present purpose it suffices to
know that §:I'S2Q* - T Q* defined in [10] restricts on basic forms to the
adjoint of 3*. The fundamental identities for YeV (¥ ) and » = g,-dual of ¥,
in the case of a harmonic Riemannian foliation &, are then ([10])

(1.1) 266*w = —trace Viw — py(w) + dgdgo,

(1.2) divgY = —dp0 = (6*w, gy),

1.3) [6*w — 5 divgY-gol* =16*w|* — ;(divpY)%, g =codim #.
Let YeV(#F). Then Y is divergence free if divgY =0, a transversal Jacobi
automorphism if Yeker Jy, where J, = —trace V? —py is the Jacobi
operator, a transversal Killing automorphism if ®(Y)g, = 0 and transversal
conformal if ©(Y)g, = u-9go for some basic function u. These properties can
be equivalently expressed in terms of the g,-dual w by 6w =0, trace
Viw + polw) =0, 6*w =0 and 6*w = —(1/q)0 pw- g4, respectively ([10]).
This motivates the introduction of the following concept.

2.0- AUTOMORPHISMS

Given Ye V(¥), Y is said to be a g-automorphism for ¢ € R if (the go-dualjw
satisfies

(2.1) —IraCCVzw —pv(a))+0'd353a)=0,
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or equivalently,
(2.2) Apw — 2pylw) +odgdgw =0,

where we use the Bochner—Weitzenbock formula Agw = —trace
Vi + polw).

2.3. EXAMPLE. By (1.1) and (1.2), for Y e V(¥). Y is transversal Killing iff
Y is a divergence-free Jacobi automorphism. Hence, a transversal Killing ¥
1s a g-automorphism for all ¢ € R. Moreover, a g-automorphism is transver-
sal Killing iff it is divergence free.

2.4. EXAMPLE. The transversal Jacobi automorphisms are precisely the 0-
automorphisms of #.

2.5. EXAMPLE. The transversal conformal automorphisms are the
(1 — 2/g)-automorphisms of #. Indeed, Y is conformal iff §*w = —
(1/g)dpw-gy. Applying & we get 36*w = (1/q)dgdgw. Conversely, this
identity implies conformality since, by (1.3),
[|o*w — jdivyY-gll* = I6*w||* — 116 wli* =
={d6*w,w) — 1{dpdw, @) =0

and conformality follows. Now the claim is a direct consequence of (1.1).

2.6. EXAMPLE. The transversal projective automorphisms are precisely the
(— 2/(g + 1)}automorphisms of Z.
For g € R, we introduce the vectorspace

{g-automorphisms}

’ ={tran§\_/ersal Killing automc;rphisms}
and define
T ={ceR|A, # {0}}.

2.7. THEOREM. Let & be a transversally oriented harmonic Riemannian
foliation on a compact oriented Riemannian manifold M. If & is stable, then
T <0.

Proof. A harmonic foliation is a critical point of the energy functional
E#) =3[uln|*-vol(M)([4]). The second variation for E for a special
variation #, of #, = & given by X eI'Q is, according to [5], given by

~. E(g;x)|=0 = <J\X9X>

F is stable if (JyX,X)> >0 for all Xel'Q. Now assume that ¥ is a g-
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automorphism for ¢ > 0. Then we have

UV YY) = —alddyo,0) = —alé,|* <O,
where @ = g,-dual of Y. It follows that Y is divergence free and hence
Killing, ie. o ¢ X.
2.8. EXAMPLE. The instability of harmonic foliations on $"(n > 2) with
q > 2 was proved in [6].

2.9. EXAMPLE. If # has a dense leaf in M then £ = @. Indeed, if Y is a -
automorphism then the function div,Y is basic and hence constant on M.
By the transversal divergence theorem ([107) [y divgY-vol(M) =0 and ¥ is
divergence free, hence Killing.

2.10. THEOREM. Let & and M be as in Theorem 2.7 and assume that the
transversal scalar curvature cy is constant;

(1) ifcg>0,thenX > — 1,
(1) if ¢y <0, then T < —1 (similarly, with sharp inequalities).

Proof. We show (i), the proof of (ii) being analogous. Let ¢y >0 and
o €X and choose a g-automorphism ¥ with div,Y # 0. Equation (2.2) can
be rewritten as

(1 +6)Apw — 2pvlw) — 6 dgdyw = 0.
Applying 6, we have
(1 + 0)Apdpew = 285ps(®) = 3¢y 05w,

where the last equality is obtained by direct computation using ¢y = const.
Taking the global scalar product with 3w we get

(1 + 6){Apbpw,dpw) = q;CB“éBCU”Z > 0.

Note that ||dzw||> does not vanish since otherwise Y would be divergence

free.

Similarly, {Apbs®,dpw) = {Spdpdpw,d3w) = ||dnén(0||2 >0 since
otherwise {(dzdzw, > = ||6zwl||> =0 would follow. Thus ¢ > —1, which
completes the proof.

3. TRANSVERSALLY EINSTEIN FOLIATIONS

F is said to be transversally Einstein if py = (4/2)idg:Q - Q for some
;. eR. In particular, ¢y = (4,2)q = const. and, by the previous theorem, for
/. <0, all transversal Jacobi, conformal and projective automorphisms are
Killing, provided that ¢ = 2.
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3.1. THEOREM. Let the harmonic foliation  be transversally Einstein with
.>0 Then L c[—1,1 — (2/q)). If £ is infinite then it forms a decreasing
sequence converging to — 1. Moreover, for a g-automorphism Y, we have the
decomposition

(3.2) Y=Y, +gradgy,

where Y, is transversal Killing and p is a basic scalar which can be uniquely
characterized as an eigenfunction of A" on M with eigentalue /./(1 + o).

Proof. £ > —1 by (i) of the previous theorem. We now show that the
decomposition (3.2) holds for an arbitrary g-automorphism ¥, o € R. In the
present situation, (2.2) takes the form

(3.3) Agw — i + 6 dgézw =0.
Consider the De Rham-Hodge decomposition of w ([9])
o =dgu + ;8 + 0,

where peQf, feQ3, and n, Qp — H#'} denotes the projection onto the
subspace of harmonic 1-forms. Substituting this into (3.3) and using ortho-
gonality we get

dg((1 +0)Agu — 7p) =0,
Op(Agf — 2B) = ApéyB — 2058 =0,
ngw =0.

The first equation says that (1 + ¢)Agu — iu is constant and so, modifying
u with an additive constant, we obtain

Agu = ﬁ;u-

As A™ = A, on basic scalars, it shows that g is a uniquely determined
basic scalar which is an eigenfunction of A" with eigenvalue J/(1 + ). As
dgu is the dual of gradyyu it remains to show that the dual ¥, of §,8 is
Killing. Now, the second equation says that Y, is Jacobi. On the other
hand, div,Y, = —6%8 =0 and so ¥, is Killing. To complete the proof of
the theorem it remains to show that T <1 —(l/g). So,let se X and Y a o-
automorphism with dual @ eQ}. By (3.2) we may assume that @ = dgy,
where u (% 0) is a basic scalar with

2
_1+au'

AM'u
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By the Bochner—Weitzenbock formula
=3 Au(lo?) = Vol|* - (Apw,0) + (py.0) + divyZ,
where Z e V(¥) is defined by w. In the present situation, this reduces to
(1 1 .
—1Ap (Jdpul?) = |V dpu* + A(E - 1———> |dgul? + div, Z.
+0
Integrating and using the transversal divergence theorem ([10]), we get
0 = IV dypll® + a5 — —— | il
= Al —— —— N
st 2 T+g)08
or equivalently,

o+ 1
0 = IV dgul* + (T - 1) [

where we used ||dgull® = (Agu, > = ((6 + 1)/4)[|Apull®>. Now, by the
Cauchy-Schwartz inequality (on the model space of %)

|Adﬂll|2 > ,,L|AB,U|2

and we obtain
1 o+1
0>{-+— -1 Z,
(q + 3 )“AB#”

As ||Agull? > 0, the inequality ¢ < 1 — (2/g) follows.

Let Spec, < Spec(M) denote the set of positive eigenvalues of AY
for which there exist basic eigenfunctions. Then Specg= {/,}4-, with
0 € K € o, which, if K = «, diverges to «. By the previous theorem,
T ={o, = (4/7,) — L}f_,. Moreover, A,, = vector space of basic eigen-
functions of A" with eigenvalue ;,. Note also that if & is given by the
fibres of a harmonic Riemannian submersion f: M — N then Qj = Q°(N)
and Specy = Spec (N)\ {0}, K = x and dim 4, = multiplicity of 4, as an
cigenvalue for A",

34. EXAMPLE. If # is defined by the fibres of the Hopf map
f:83 ' 5 CP"then g = 2n, py = p“™" = 2(n + 1)id; that is,

4 =4 + 1), Specg = {4, = dkin + k)} =,

and

n+1 *
R R
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As £ <0, for n 22, cvery transversal conformal automorphism is Killing.
On the other hand, for n =1, ie. ¢ =2, we have | — (2/9) =6, =0 and
dim 4, = 3.

3.5. EXAMPLE. Let # be defined by the fibres of a harmonic Riemannian
submersion f: M — §", n 2 2. (A large class of such maps are constructed in
[1}) Then g =n, py =p8S" = (n — 1) 1id; that is,

/=2(n—1),Specy = {4, =klk +n — )},

and

(As 6, = 1 — (2/g) the bounds for £ in Theorem 3.1 are the best possible.)
For n # 2,0¢X and so every transversal Jacobi automorphism is Killing.
Forn =2, 6, =0 and again dim 4, = 3.
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