REMARKS ON WENTE'S EXAMPLE
OF AN IMMERSED TORUS IN E^3

by Samuel I. Goldberg and Gabor Toth

ABSTRACT. In 1984, H. Wente gave an example of an immersed torus in E^3 with constant mean curvature thereby resolving the so-called Hopf conjecture. In this paper, the local behaviour of the Gaussian curvature K near its zero set is studied. This gives rise to a solution of the Hopf problem provided an assumption on the asymptotic behaviour of K near its zero set is made.

1. Hopf's problem. In 1950, Heinz Hopf proved that a closed orientable surface of genus zero immersed in Euclidean 3-space E^3 with constant mean curvature is a round sphere S^2 [7,8], i.e., an isometrically embedded sphere. He asked if the condition on the genus could be removed. In 1955, A. D. Aleksandrov showed that for embedded surfaces it could [2,7], and he conjectured that this was valid for immersions as well. It was not until 1984 when H. Wente [11] gave a striking example of an immersed torus in E^3 with constant mean curvature that this problem was resolved. The construction required a detailed analysis of the sinh-Gordon equation, i.e., the Gauss equation (cf. also [1]). Note that the Gauss map of such an immersion is harmonic [10]. However, it is not holomorphic, and by a result of J. Eells and J. C. Wood [6], it has degree zero.

1980 Mathematics Subject Classification. Primary 53A10; Secondary 31A05, 53C45.

Key words and phrases. 2-sphere, mean curvature, Gaussian curvature, superharmonic function, sinh-Gordon equation.

1Supported by the Natural Sciences and Engineering Research Council of Canada.
In this paper, the local behaviour of the Gaussian curvature K near its zero set Z is analyzed. This leads to a solution of the Hopf problem provided an assumption on the asymptotic behaviour of K near Z is made.

Theorem 1. Let M be a closed surface immersed in E^3 with constant mean curvature, and let γ be the function defined by

$$\gamma(s) = s \cdot \int_{\{K^2 \leq 1/s\}} AK^2, \quad s > 0,$$

where $\{K^2 \leq 1/s\}$ is the set of all $x \in M$ such that $K^2(x) \leq 1/s$. Then, either M is a round sphere (and therefore $\gamma = 0$) or

$$\lim_{s \to \infty} \gamma(s) = \infty,$$

and the derivative of γ is eventually strictly positive.

Corollary. Let M be a closed surface immersed in E^3 with constant mean curvature. Then, if

$$\int_{\{K^2 \leq 1/s\}} AK^2 = O(\frac{1}{s}) \quad \text{for} \quad s \to \infty,$$

M is a round sphere.

Theorem 1 shows that Wente's example is indeed very special. It's proof is a consequence of a method developed by S.-S. Chern and S. I. Goldberg in
an analysis of the sinh-Gordon equation, and a classical method of
Nevanlinna theory which uses an appropriate exhaustion function on \(\Omega \).
Details will appear elsewhere.

2. The superharmonicity of \(\log K^2 \), the critical points of \(K \),
and Wente's example. Let \(M \) be a closed surface immersed in \(E^3 \) with
constant mean curvature which is normalized to be \(1/2 \). Since this latter
condition is expressed by an absolutely elliptic equation \([7]\), it follows from
Bernstein's theorem that \(M \) is analytic in \(E^3 \). Hence, all data derived from
the metric, such as the Gaussian curvature \(K \), are (real) analytic. In
particular, \(L = \text{Zero}(K) \) is an analytic set in \(M \), and so applying the
Weierstrass Preparation Theorem \([9]\), it consists of finitely many analytic
curves.

The behaviour of the function \(\gamma \) in (1) is determined by a certain
nonnegative (analytic) scalar invariant \(C \) of the Gauss map \(\varphi : M \to S^2 \)
of the immersion of \(M \) into \(E^3 \) given in \([4]\). In fact, it turns out that
\(C = |\psi \beta|^2/4 \), where \(\beta \) is the second fundamental form of the immersion, and
\(\psi \beta \) is its covariant derivative. Note that \(C = 0 \) if and only if \(M \) is a
round sphere.

In the sequel, it is assumed that \(M \neq S^2 \). The following global formulas
will be required:

\[
(3) \quad \frac{1}{2} \Delta K^2 = (1 - 4K)(2C - K^2) - C
\]

and on \(\Omega \): \(\Omega \):

\[
(4) \quad \frac{1}{2} \Delta \log K^2 = -(1 - 4K) - \frac{C}{K^2}.
\]
The latter says that \(\log k^2 \) is superharmonic away from \(Z \) (see [4], p. 143) since \(1 - 4K \geq 0 \) (with equality at the umbilics), which is an important fact in the proof of Theorem 1.

Away from umbilics, \(M \) is locally given by a conformal representation \(F \) which is determined by a solution of the sinh-Gordon equation

\[
\Delta \omega + \frac{1}{2} \sinh 2\omega = 0,
\]

where \(e^{-2\omega} \) corresponds, via \(F \), to the (positive) difference \(\lambda_2 - \lambda_1 \) of the principal curvatures [1]. Since \(\lambda_1 + \lambda_2 = 1 \), the Gaussian curvature \(K \) corresponds to \((1 - e^{-4\omega})/4 \).

A point \(z_0 \in Z \) is said to be smooth if there is a neighborhood \(U \) of \(z_0 \) such that \(U \cap Z \) is a single analytic arc. A nonsmooth point \(z_0 \in Z \) is said to be a \(C^1 \)-meeting point of \(q \) general folds if a neighborhood \(U \) of \(z_0 \) is \(C^1 \) diffeomorphic to a neighborhood of the origin in \(E^2 \) with \(U \cap Z \) corresponding to \(q(>1) \) line segments meeting at the origin (see [12] and [5, p. 53]).

THEOREM 2. If \(M \neq S^2 \), then \(C \) and \(dK \) do not vanish at the smooth points of \(Z \).

The proof follows from the sinh-Gordon equation, the maximum principle for subharmonic functions, and the superharmonicity of \(K \) on the set \(\{K > 0\} \).

Remarks. (a) The converse of Theorem 2 is also true and boils down to the implicit function theorem, namely, if \(z_0 \in Z \) with \(C(z_0) \neq 0 \), then \(z_0 \) is a smooth point of \(Z \). For, \(|dK|^2 = C \) on \(Z \).
(b) Theorem 2 implies that the critical points of K on Z are isolated on Z. In fact, they are also isolated on M.

THEOREM 3. If $M \neq S^2$, any nonsmooth point $z_0 \in Z$ is a C^1-meeting point of an even number of general folds.

Proof. K is the ratio of surface elements with respect to the Gauss map $\varphi : M \to S^2$. Thus, Z is the set of singular points of φ. We can then use the classification of such points given by J. C. Wood [12]. This, together with the nature of the sinh-Gordon equation yields the result.

Remark. In Wente's example, Z is a union of figure eights, and the nonsmooth points are meeting points of two general folds. Moreover, C vanishes only at the nonsmooth points, and the condition $K^2 < 2C$ in [4. Proposition 3.4] is not satisfied on Z.

3. **Completion of the proof of Theorem 1.** If $M \neq S^2$, then by Theorem 2, C does not vanish identically on Z. Formula (2) then follows from

PROPOSITION 1. If C is not identically zero on Z, then

$$\lim_{s \to \infty} \gamma(s) = \infty.$$
Proof. By (3).

\[\gamma(s) = 2s \cdot \int_{\{K^2 \leq 1/s\}} (1 - 8K)C - 2s \cdot \int_{\{K^2 \leq 1/s\}} (1 - 4K)K^2 \]

\[\geq s \cdot \int_{\{K^2 \leq 1/s\}} C \text{ for large } s. \]

To show that the r.h.s. diverges, we first note that, by hypothesis, \(C \) does not vanish on an arc \(\Gamma \subset \mathbb{C} \). The proposition is then a consequence of the following elementary lemma applied to a tubular neighborhood of \(\Gamma \) in \(M \).

Lemma 2. Let \(u \) be a \(C^1 \) function on \([0,1] \times [-1,1]\) with \(\text{Zero}(u) = [0,1] \times \{0\} \). Then, for some \(a > 0 \),

\[\text{Area}(\{|u| \leq \varepsilon\}) \geq a \varepsilon \]

uniformly for \(\varepsilon \to 0 \).

The last statement in Theorem 1 is the content of

Proposition 2. Given \(M \) as in Theorem 1, the function \(\gamma \) is eventually nondecreasing. If the derivative of \(\gamma \) vanishes on a divergent sequence \(s_n \to \infty \), then \(M \) is a round sphere.

For the proof we shall require the following two lemmas, where \(M \) is considered as a compact Riemann surface.

Lemma 3. Let \(\tau \) be an exhaustion function on \(M \mathbb{C} \). Then, for \(r \)

large.
\[
\int_{\{r \leq r_0\}} \Delta \log k^2 = \frac{d}{dr} \int_{\{r = r\}} \log k^2 \cdot d^c r.
\]

where \(d^c = 1(\mathbf{1} - \theta) \) (see [3, p. 18] for notation).

Lemma 4. The function \(k^2 \) has no critical points near \(Z \).

Proof of Proposition 2. If \(N \neq S^2 \), then by Lemma 4, we can choose \(\tau = \log \log (1/k^2) \) near \(Z \). We may then extend it to an exhaustion function \(\tau \) on the whole of \(M \setminus Z \). Along \(\{\tau = r\} \), for \(r \) large,

\[
d^c \tau = d^c (\log \log \frac{1}{k^2}) = \frac{1}{\log k^2} \frac{d^c k^2}{k^2}.
\]

and so (5) becomes

\[
\int_{\{r \leq r_0\}} \Delta \log k^2 = \frac{d}{dr} \left(e^{r} \int_{\{r = r\}} d^c k^2 \right).
\]

By a change of variable, \(s = e^r \), we obtain, for \(s \) large,

\[
\frac{1}{s \log s} \int_{\{k^2 \leq 1/s\}} \Delta \log k^2 = \frac{d}{ds} \left(s \int_{\{k^2 \leq 1/s\}} d^c k^2 \right)
= -\frac{d}{ds} \left(s \int_{\{k^2 \leq 1/s\}} \Delta k^2 \right) = -\gamma'(s),
\]

where in the second equality Stokes' theorem is used. Now, by the

superharmonicity of \(\log k^2 \), \(\gamma \) is eventually nondecreasing. Finally, if
\(\gamma'(a_n) = 0 \) for some sequence \(a_n \to \infty \) then, again by the superharmonicity of \(\log k^2 \) and (6), it follows that \(A \log k^2 = 0 \) on \(MN \). By (4) this means that \(C = 0 \) everywhere, and so \(N \) is a round sphere which is a contradiction.

REFERENCES

Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, Illinois 61801

Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada K7L 3N6

Department of Mathematics, Rutgers University, Camden, New Jersey, 08102.