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OF AN IMMERSED TORUS IN E>

by Samuel I. Gcnlo:lberg1 and Gahor Toth

ABSTRACT. In 1984, H. Wente gave an example of an immersed torus in E3 with
constant mean curvature thereby resolving the so-called Hopf conjecture. In
this paper, the local behaviour of the Gaussian curvature K near its zero
set is studied. This gives rise to a solution of the Hopf problem provided an
assumption on the asymptotic behaviour of K near its zero set is made.

1. Hopf's problem. In 1950, Heinz Hopf proved that a closed orientable
surface of genus zero immersed in Euclidean 3-space E3 with constant mean
curvature is a round sphere 82 [7.8], i.e., an isometrically embedded
sphere. He asked if the condition on the genus could be removed. In 1955, A.
D. Aleksandrov showed that for embedded surfaces it could [2,7]. and he
conjectured that this was valid for immersions as well. It was not until 1984
when H. Wente [11] gave a striking example of an immersed torus in E3 with
constant mean curvature that this problem was resolved. The construction
required a detailed analysis of the sinh-Cordon equation, i.e., the Causs
equation (cf. also [1]). Note that the Gauss map of such an immersion is
harmonic [10]. However, it is not holomorphic, and by a result of J. Eells

and J. C. Wood [6], it has degree zero.
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In this paper. the local behaviour of the Gaussjan curvature K near its
zero set Z 1is analyzed. This leads to a solution of the Hopf problem

provided an assumption on the asymptotic behaviour of K near Z is made.

THEOREM 1. Let M be a closed surface immersed in 1'9 with constant

mean curvature, and let <y be the function defined by

(1) ¥(s) =58 ¢ I AK2. s > 0.
(%175}

vhere (K2 § 1/} 1is the set of all x € M such that Kz(x) $ V/s. Then,

either M 1is a round sphere (and therefore v =0) or

(2) lim y(8) = =,
890

and the derivative of <y 1s eventually strictly positive,

COROLLARY. Let M be a closed surface immersed in E3 with constant

mean curvature, Then, if

a2 = 0(%) for s = @,
{(K%1/8)

M is a round sphere.

Theorem 1 shows that Wente's example is indeed very special. It's proof

is a consequence of a method developed by S.-S. Chern and S. I. Goldberg in



[4]. an analysis of the sinh-Gordon equation, and a classical method of
Nevanlinna theory which uses an appropriate exhaustion function on M\Z.

Details will appear elsewhere.

2. The superharmonicity of log K2. the critical points of K,

and Wente's example. Let M be a closed surface immersed in l-.“3 with

constant mean curvature which is normalized to be 1/2. Since this latter
condition is expressed by an absolutely elliptic equation [7], it follows from
Bernstein's theorem that M is analytic in E3 Hence, all data derived from
the metric, such as the Gaussian curvature K, are (real) analytic. In
particular, <4 = Zero(K) is an analytic set in M, and so applying the
Welerstrass Preparation Theorem [9]. 1t consists of finitely many analytic
curves.

The behaviour of the function vy in (1) is determined by a certain
nonnegative (analytic) scalar invariant C of the Gauss map ¢ : Mo 52 of
the immersion of M into Ea given in [4]. In fact, it turns out that
C= |vg |2/4. vhere B is the second fundamental form of the immersion. and
vf 1is its covariant derivati've. Note that C =0 if and only if M jis a
round sphere.

In the sequel, it is assumed that M gz 82. The following global formulas

will be required:
(3) F M2 = (1 - aK)(2¢ - K3 - C
and on M\Z,

1 C
(4) EA103K2=-(1-4K)-;(-2—.
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The latter says that log K2 is_superharmonic away from Z (see [4], p. 143)
since 1 -4 >0 (with equality at the umbilics), which is an important fact
in the proof of Theorem 1.

Away from umbilics, M 1is locally given by a conformal representation F

which is determined by a solution of the sinh-Gordon equation
do + & sinh 20 = 0,

where e—% corresponds, via F, to the (positive) difference )\2 - 7\1 of

the principal curvatures [1]. Since At =T the Gaussian curvature K

-4

corresponds to (1 - e ° )/4.

A point z, € Z 1is said to be smooth if there is a neighborhood U of
zq such that UN Z 1is a single analytic arc. A nonsmooth point z, €Z is
said to be a Cl-meetigg point of q general lfolda if a neighborhood U of
z, is C1 diffeomorphic to a neighborhood of the origin in E2 with UN2

corresponding to q(>1) line segments meeting at the origin (see [12] and
[6. p. 53]).

THEOREM 2. If M %S>, then C and dK do not vanish at the smooth

points of Z.

The proof follows from the sinh-Gordon equation, the maximum principle

for subharmonic functions, and the superharmonicity of K on the set

{K > 0}.

Remarks. (a) The converse of Theorem 2 is also true and boils down to
the implicit function theorem, namely, if zZ, €Z with C(zo) #0, then 2,

is a smooth point of Z. For, |dl(|2 =C on Z.
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(b) Theorem 2 implies that the critical points of K on Z are

isolated on Z. In fact, they are also isolated on M.

THEOREM 3. If M 2 82. any nonsmooth point z, €Z is a Cl-meetigg
point of an even number of general folds.

Proof. K is the ratio of surface elements with respect to the Gauss map
¢ : M= 82 Thus, Z is the set of singular points of ¢. We can then use
the classification of such points given by J. C. Wood [12]. This, together

with the nature of the sinh-Gordon equation yields the result.

Remark. In Wente's example, Z is a union of figure eights, and the

nonsmooth points are meeting points of two general folds. Moreover, C
vanishes only at the nonsmooth points, and the condition K2 22C in [4.
Proposition 3.4] is not satisfied on Z.

3. Completion of the proof of Theorem 1. If M 82. then by

Theorem 2, C does not vanish identically on 2. Formula (2) then follows

from

PROPOSITION 1. If C 1is not identically zero on Z, then

lim y(s) = =.
s



Proof. By (3).

+(s) = 25 I (1 - 8K)C - 25 * J (1 - 4K)K>
(& Q/s) {K%¢1/s}
_)__ 5 ° C for large s.
(%178}

To show that the r.h.s. diverges, we first note that, by hypothesis, C does
not vanish on an arc I' C Z. The proposition is then a consequence of the

following elementary lemma applied to a tubular neighborhood of T in M.

LEMMA 2. let u bea C1 function on [0.1] x [-1,1] with

Zero(u) = [0,1] x {0}.. Then, for some a > O,

Area{|u| £ )} 2 a-e
uniformly for & - 0.

The last statement in Theorem 1 is the content of

PROPOSITION 2. Given M as in Theorem 1, the function <y is eventually
nondecreasing. If the derivative of <« yvanishes ona divergent seguence

s, » o, then M is a round sphere.

For the proof we shall require the following two lemmas, where M is

considered as a compact Riemann surface.

LEMMA 3. Let T be an exhaustion function on M\Z. Then, for r

large,
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(5) I AlogK2=-£ I log K2 -+ %,
{r&r) {r=r}
where d° = 10 - d) (see [3. p. 18] for nhotation).

LEMMA 4. The function K2 has no critical points near Z.

Proof of Proposition 2. If M # 82. then by Lemma 4, we can choose

T = log log(l/l(z) near Z. We may then extend it to an exhaustion function

T on the whole of M\Z. Along {r=r}, for r large,

aK>

d%r = dc(log log it —_—

A .
1(2‘-logK2 Kz'

and so (5) becomes

By a change of variable, s = e° » We obtain, for s large,

(6) ;1—;3? I Alogx2=£{s- I_acxz}
{K°21/8) K%=1/s)
= -~ i e AK2 = ! "
B 2, @

where in the second equality Stdkes’ theorem is used. Now, by the

superharmonicity of log K2. Y 1is eventually nondecreasing. Finally, if



1o

¥ (sn) = 0 for some sequence s @ then, again by the superharmonicity of

log
C=

1.

10.

11.

12.

K2 and (6). it follows that A log K2 =0 on M\Z. By (4) this means that

0 everywhere, and so M is a round sphere which is a contradiction.
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