
ON NATURALLY REDUCTIVE HOMOGENEOUS SPACES
HARMONICALLY EMBEDDED INTO SPHERES

GABOR TOTH

1. Introduction and preliminaries

This note continues earlier studies [9, 10] concerning rigidity properties of
harmonic maps into spheres. Given a harmonic map / : M -> S", n ^ 2 [5] of a
compact Riemannian manifold M into the Euclidean n-sphere S" the (finite
dimensional) vector space K(f) of all divergence free Jacobi fields along / [7]
contains the vector space of infinitesimal isometric deformations so{n +1) o / , where
so(n +1) is identified with the Lie algebra of Killing vector fields on S" [8, 9]. Recall
t h a t t h e h a r m o n i c m a p / i s s a i d t o b e infinitesimally rigid if so(n + \ ) o f = PK(f),
where PK(j') <= K(f) is the projectable part, that is

PK(f) = {v e K(f) | vx = vx. whenever f(x) = f(x'), x, x' e M} .

Any map J : M -> Sn can be considered, via the inclusion S" a Un+1, as a vector
function / : M -> Un + 1 with components ( / \ ..., /B + 1) such that

The map / is harmonic if and only if the corresponding vector function satisfies the
equation

(1) AM/

where AM is the Laplacian on M and e(f) denotes the energy density of / . (Here and
in what follows we use the notation (for example the sign conventions) of [4] and
this serves as a general reference for harmonic maps as well.) Further, by translating
tangent vectors of S" a W + l to the origin, a vector field v along / (that is, a section
of the pull-back bundle f*(T(S"))) gives rise to a vector function v: M -*• Un+1 with
the obvious property that </j £> = 0. Then [6] v e K(f) if and only if

(2) AMv = 2e(f)-v;

that is, K(j') can be identified with the vector space of all solutions v: M -> U" + 1 of
(2) which satisfy the linear constraint </j y> = 0.

The purpose of this paper is to study infinitesimal rigidity of harmonic maps
/ : M -> S" when M = G/H is a naturally reductive Riemannian homogeneous
space. By a result of [10], any full infinitesimally rigid harmonic embedding
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/ : G/H -> S" with constant energy density is equivariant, that is there exists a
(necessarily unique) monomorphism p:G -> SO(n+\) such that / is equivariant
with respect to p. To obtain restrictive conclusions on the behaviour of
infinitesimally rigid equivariant harmonic maps we consider equivariant vector fields
along / which, as is proved in Section 2, belong to K{f). In this case, under fairly
general assumptions, we show that the product of p{G) with its centralizer in
SO{n + l) acts transitively on S" and then a description of such groups given by
A. Borel [2, 3] is exploited in Section 3; this yields the result that infinitesimal rigidity
is not generally present.

Throughout this note all objects are smooth, that is, of class C°°.
I thank the referees for suggesting several improvements to the original

manuscript.

2. Equivariant vector fields along harmonic maps

In what follows we consider a compact Lie group G and a closed subgroup
H c G such that the canonical action x of G on G/H (induced by left translations) is
effective, that is H does not contain proper closed subgroups which are normal in G.
We endow G with a fixed biinvariant metric. Denoting by \) and g the Lie algebras of
H and G respectively, the differential of the canonical projection n : G -> G/H at the
identity identifies the orthogonal complement I)1 <= g with the tangent space TO(G/H)
at the origin o = {H} e G/H. We put on T0(G/H) the induced metric (that is, the
identification I)1 = T0(G/H) becomes an isometry) and extend it by T to a metric on
G/H. This Riemannian metric on G/H is said to be naturally reductive. Obviously,
n: G -> G/H becomes a Riemannian submersion with totally geodesic fibres, in
particular, n is harmonic [4].

Recall that a map / : G/H -* Sn is equivariant if there exists a homomorphism
p:G -• SO(n + 1) such that

(3) / o xg = p(g) of, g e G .

If f is full then p is uniquely determined; G acts, via p, on S" and im(/) <= Sn is an
orbit of this action. Further, p is injective provided that / is an embedding and, in
this case, (H) (that is the set of conjugacy classes of H in G) is the isotropy type of
im (/) since / : G/H -> Sn is an equivariant embedding.

Given a full equivariant embedding / : G/H -* S" (with the corresponding
monomorphism p : G -> SO(n + l)) the pull-back bundle & = f*(T(Sn)) inherits a
natural G-action by putting g • vx = p(g)*vxe ^Xg{x), where vxe^x ( = Tf(x){S")),
x e G/H, g e G. Moreover, as G preserves the (induced) metric on SF and leaves the
subbundle T(G/H) invariant, we have the G-invariant orthogonal decomposition

& = JV® T(G/H),

where A denotes the normal bundle of / . Denoting by J{SF) a Cco(ir) the linear
space of G-invariant sections of 8F we have the following.

THEOREM 1. If f:G/H-+S" is a full equivariant harmonic embedding then
c K(f).
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Proof. Write p:G^> SO{n4-1) for the monomorphism satisfying (3); we first
claim that

(4) &Gp = 2e(f)-p,

where p is considered as a matrix-valued function on which the Laplacian AG of G
acts componentwise. Indeed, by the equivariant equation (3), as rg{o) = n{g), geG,
we have

(AGp)(g) • f(o) = (AG(/ o n)){g) = (&G/"f)(n(g))

= 2e(f)-p(g)-f(o).

The same argument works with o replaced by any point of G/H since the group
metric is biinvariant. As / is full, (4) follows.

Now, putting v £«/(#"), by Section 1, we have to show that

AG'Hv = 2e(f) • v .

Indeed, G-invariance of v and (4) implies that

(AGIHv)(n(g)) = {A°(vo n))(g) = (AGp)(g) • v(o)

= 2e(f) • p(g) • v(o) = 2e(f) • v{n(g)), geG;

and this completes the proof.

The principal property of infinitesimally rigid harmonic maps to be exploited
subsequently is contained in the next result.

THEOREM 2. Let f : G/H -* S" be a full equivariant infinitesimally rigid harmonic
embedding with associated monomorphism p: G -* SO(n + l). Then precomposition
with f yields a linear isomorphism <D : 3 -• J{^), where 3 denotes the Lie algebra of the
centralize)' of p{G) in SO(n 4-1). Further, <J> composed with the evaluation map
e0: C 0 0 ^ ) -> 3F0 maps isomorphically onto Fix {H, fF0), where H acts on 2F0 via p.

Proof Put X e 3; now consider the one-parameter subgroup (0t) of isometries
of S" induced by X which is contained in the identity component Zo of the centralizer
of p(G) c: SO{n +1). Here, for g € G and x e G/H, we have

(g-(Xof))(x) = P{gUXf(x)) =

= jt(p(g) o 0,

= jt (0, o / ) (T , (X)) | , = 0 = ({X o / ) o T,)(X) ,
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that is the vector field X o f along / is G-invariant and on putting <b{X) = X o / ,
X e 3 , we obtain a well-defined linear map 0 : 3 -+J{2F\ As / is full and the
connected components of the zero-set of a Killing vector field on S" are totally
geodesic submanifolds we conclude that <D is injective. To prove that <£ is surjective
let u e W By Theorem 1, veK(f) ( = PK(f)) and infinitesimal rigidity of /
implies the existence of a Killing vector field X e so(n +1) with v = X o / . We claim
that X e 3. In variance of v implies that

(p(g)*X)o f = (X o f ) o x g = (X o p(g))o f , g e G ,

and so the Killing vector field p{g)tX - X o p(g) vanishes on im(/), that is we
obtain

geG.

Denote by (0t) c SO(n +1) the one-parameter group of isometries induced by X; the
last equation translates then as

p{g)o(f>t = <t>top{g), t e U ,

or equivalently, (<£,) <=. Zo. Thus X e 3, and <b is onto. The restriction BQ\J(^) maps
J{&) isomorphically onto Fix(#, &0)t since v eJ{!F) is determined by its value v0

at the base point, and it is clearly necessary and sufficient to have vXh{0) = h • v0 for all
heH.

3. Infinitesimal flexibility

The main result of this section is the following.

THEOREM 3. Let f : G/H -• S", n ^ 2, be a full equivariant infinitesimally rigid
harmonic embedding with associated monomorphism p:G -> SO(n + l). Then, either f
is onto or im ( /) is a non-principal orbit of the action ofG on S" via p. In particular, in
the latter case, if H c G is connected {for example if G/H is simply connected) then
im ( /) is a singular orbit.

Proof. Assuming that the orbit im (/) c Sn is principal we show that
im (/) = S". By a well-known property of principal orbits [4] H acts trivially on the
normal space Jf0 (considered as a linear slice at f{o) e S"), that is Jf0 c Fix (if, &0).
We first claim that the closed subgroup K = p{G)-Z0 c SO(n + l) acts on S"
transitively. Indeed, the tangent space Tm(K(f(o))) clearly contains 7}(0)(im(/))
and, by Theorem 2, it contains J\T0 c: e(o)(3). Thus K(f{o)) is open; since K is
compact, the claim follows.

Next, we assert that all orbits of G on Sn have the same type. If y, y' e S" then
choose k = p(g) • z e K, g eG, ze Zo, such that y' = k{y). Then

G v = G P « ? ) u b ) ) = 9 ' G z ( y ) ' 0 " 1 = g G y - g ' 1 ,

or equivalently, (Gy) = (Gy).
By Borel's classification of actions on S" with one isotropy type (cf. [4, p. 196]), it

follows that G is either transitive on S", that is we have im (/) = S", or G = S3 and G
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acts freely on S". (Note that if G = S1 the harmonic map / is either constant or
maps onto a closed geodesic and hence fullness of / implies that n ^ 1, which is
excluded.) Assuming that G = S3, as G acts freely on S" we have H = {1}, in
particular,

dim 3 = dim Fix (H, J%) = dim#"0 = n.

By the proof of Theorem 2, Zo acts transitively on S" since 7}(o)(Z0(/(o))) = &0.
For reasons of dimensions, Zo is actually diffeomorphic with S" and hence n = 3.
Thus / : G -> S3 is onto and the proof is finished.

REMARK. If G/H is symmetric and / : G/H -* S" is an equivariant harmonic
diffeomorphism then / is totally geodesic (cf. [10, proof of Corollary 1]). Further, if
G/H is irreducible then the pull-back of the metric on S" via / is G-invariant and so
coincides (up to a constant multiple) with the one given on G/H, that is we obtain
that / : G/H -> S" is homothetic. Note that any homothetic diffeomorphism
/ : G/H -+ S" is infinitesimally rigid [9]. In particular, if G/H is irreducible symmetric
then a harmonic diffeomorphism / : G/H -* Sn with e{f) = const, is infinitesimally
rigid if and only if / is homothetic (compare with Corollary 2 in [10]). On the other
hand, any conformal diffeomorphism of S2 is infinitesimally rigid but non-isometric
unless e(f) = const. [10].

EXAMPLE 1. The standard Veronese surface / : UP2 -> S4 is infinitesimally rigid
[6]. Denoting by p: SO(3) -* SO(5) the associated monomorphism, as UP2 is non-
orientable, im ( /) <= S" is a singular orbit [4, p. 188], in accordance with Theorem 3.
Also, the isotropy subgroup O(2) is easily seen to act on 2F0 with trivial fixed point
set.

In the case when H = {1} Theorem 3 reduces to the following.

COROLLARY 1. With the exception of homothetic diffeomorphisms f : G -> S3, any
full harmonic embedding f: G -*• S", n ^ 2, with e{f) = const, is infinitesimally non-
rigid.

For homogeneous hypersurfaces Theorem 3 can be sharpened as follows.

COROLLARY 2. Let G/H be naturally reductive. Then any harmonic codimension-
one embedding f : G/H -*• S", n ^ 2, with e(f) = const., is infinitesimally non-rigid.

Proof. Assuming, on the contrary, that / : G/H -> S" is infinitesimally rigid,
Theorem 3 implies that the orbit im ( /) <= S" is exceptional. (Obviously, im ( /) c: S"
cannot be singular since otherwise G acts transitively on S".) As im( / ) is non-
principal we have Fix(H, JV0) ^ JV0 and H acts on the line JV0 with trivial fixed
point set. Thus, according to the terminology of [4, p. 185], im( / ) is special
exceptional. As n ^ 2, we have H^S"; Z2) = 0 which contradicts [4, 3.12.
Theorem].

REMARK. Fullness of / in Corollary 2 is essential since, by [9], the canonical
inclusion / : SO(n)/SO{n— 1) -> S" is infinitesimally rigid.
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EXAMPLE 2. The Clifford map / : T2 -> S3 defined by

/(</>, \j/) = (cos (f> • cos ij/, sin 0 • cos \j/, cos </> • sin \p, sin </> • sin \jj), 0 < (/>, if/ < 2n ,

is a full equivariant minimal hypersurface and so, by Corollary 1 or 2, infinitesimally
non-rigid. Hence, by [9, Proposition 1], d imX(/) > dimso(4) = 6. In fact,
dim K(f) = 7 as the following argument shows.

Since e(f) = 1, to compute d imK(/) we have to determine the vector space of
vector functions v : T2 -> R4 satisfying

(5) Aj2v = 2v

with the linear constraint

(6) </;»> = o.

By (5), the components of v are eigenfunctions of AT2 and hence [1] we have
v = A- f, where A is a (4x4) matrix. Substituting this into </, u> we obtain a
fourth-order homogeneous trigonometric polynomial whose coefficients, by (6), have
to vanish. An easy computation shows that A has the form

A =

where a, /?, y, 3, ex,e U, i = 1, 2, 3,4, and ex +e2 + e3 + eA = 0. Thus, d imX(/ ) = 7
and the claim follows.
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