ON NATURALLY REDUCTIVE HOMOGENEOUS SPACES HARMONICALLY EMBEDDED INTO SPHERES

GÁBOR TÓTH

1. Introduction and preliminaries

This note continues earlier studies [9, 10] concerning rigidity properties of harmonic maps into spheres. Given a harmonic map $f: M \to S^n$, $n \ge 2$ [5] of a compact Riemannian manifold M into the Euclidean *n*-sphere S^n the (finite dimensional) vector space K(f) of all divergence free Jacobi fields along f [7] contains the vector space of infinitesimal isometric deformations $so(n+1) \circ f$, where so(n+1) is identified with the Lie algebra of Killing vector fields on S^n [8, 9]. Recall that the harmonic map f is said to be *infinitesimally rigid* if $so(n+1) \circ f = PK(f)$, where $PK(f) \subset K(f)$ is the projectable part, that is

$$PK(f) = \{ v \in K(f) \mid v_x = v_{x'} \text{ whenever } f(x) = f(x'), x, x' \in M \}.$$

Any map $f: M \to S^n$ can be considered, via the inclusion $S^n \subset \mathbb{R}^{n+1}$, as a vector function $f: M \to \mathbb{R}^{n+1}$ with components $(f^1, ..., f^{n+1})$ such that

$$\langle f, f \rangle = \sum_{i=1}^{n+1} (f^i)^2 = 1.$$

The map f is harmonic if and only if the corresponding vector function satisfies the equation

(1)
$$\Delta^{M} f = 2e(f) \cdot f,$$

where Δ^M is the Laplacian on M and e(f) denotes the energy density of f. (Here and in what follows we use the notation (for example the sign conventions) of [4] and this serves as a general reference for harmonic maps as well.) Further, by translating tangent vectors of $S^n \subset \mathbb{R}^{n+1}$ to the origin, a vector field v along f (that is, a section of the pull-back bundle $f^*(T(S^n))$) gives rise to a vector function $\hat{v}: M \to \mathbb{R}^{n+1}$ with the obvious property that $\langle f, \hat{v} \rangle = 0$. Then [6] $v \in K(f)$ if and only if

(2)
$$\Delta^M \hat{v} = 2e(f) \cdot \hat{v};$$

that is, K(f) can be identified with the vector space of all solutions $\hat{v}: M \to \mathbb{R}^{n+1}$ of (2) which satisfy the linear constraint $\langle f, \hat{v} \rangle = 0$.

The purpose of this paper is to study infinitesimal rigidity of harmonic maps $f: M \to S^n$ when M = G/H is a naturally reductive Riemannian homogeneous space. By a result of [10], any full infinitesimally rigid harmonic embedding

Received 30 September, 1982; revised 27 May, 1983.

During the preparation of this paper the author was partially supported by a grant from the Science and Engineering Research Council.

J. London Math. Soc. (2), 29 (1984), 175-180.

 $f: G/H \to S^n$ with constant energy density is equivariant, that is there exists a (necessarily unique) monomorphism $\rho: G \to SO(n+1)$ such that f is equivariant with respect to ρ . To obtain restrictive conclusions on the behaviour of infinitesimally rigid equivariant harmonic maps we consider equivariant vector fields along f which, as is proved in Section 2, belong to K(f). In this case, under fairly general assumptions, we show that the product of $\rho(G)$ with its centralizer in SO(n+1) acts transitively on S^n and then a description of such groups given by A. Borel [2, 3] is exploited in Section 3; this yields the result that infinitesimal rigidity is not generally present.

Throughout this note all objects are smooth, that is, of class C^{∞} .

I thank the referees for suggesting several improvements to the original manuscript.

2. Equivariant vector fields along harmonic maps

In what follows we consider a compact Lie group G and a closed subgroup $H \subset G$ such that the canonical action τ of G on G/H (induced by left translations) is effective, that is H does not contain proper closed subgroups which are normal in G. We endow G with a fixed biinvariant metric. Denoting by h and g the Lie algebras of H and G respectively, the differential of the canonical projection $\pi: G \to G/H$ at the identity identifies the orthogonal complement $\mathfrak{h}^{\perp} \subset \mathfrak{g}$ with the tangent space $T_o(G/H)$ at the origin $o = \{H\} \in G/H$. We put on $T_o(G/H)$ the induced metric (that is, the identification $\mathfrak{h}^{\perp} = T_o(G/H)$ becomes an isometry) and extend it by τ to a metric on G/H. This Riemannian metric on G/H is said to be *naturally reductive*. Obviously, $\pi: G \to G/H$ becomes a Riemannian submersion with totally geodesic fibres, in particular, π is harmonic [4].

Recall that a map $f: G/H \to S^n$ is equivariant if there exists a homomorphism $\rho: G \to SO(n+1)$ such that

(3)
$$f \circ \tau_g = \rho(g) \circ f, \quad g \in G.$$

If f is full then ρ is uniquely determined; G acts, via ρ , on S^n and im $(f) \subset S^n$ is an orbit of this action. Further, ρ is injective provided that f is an embedding and, in this case, (H) (that is the set of conjugacy classes of H in G) is the isotropy type of im (f) since $f : G/H \to S^n$ is an equivariant embedding.

Given a full equivariant embedding $f: G/H \to S^n$ (with the corresponding monomorphism $\rho: G \to SO(n+1)$) the pull-back bundle $\mathscr{F} = f^*(T(S^n))$ inherits a natural G-action by putting $g \cdot v_x = \rho(g)_* v_x \in \mathscr{F}_{\tau_g(x)}$, where $v_x \in \mathscr{F}_x$ ($= T_{f(x)}(S^n)$), $x \in G/H$, $g \in G$. Moreover, as G preserves the (induced) metric on \mathscr{F} and leaves the subbundle T(G/H) invariant, we have the G-invariant orthogonal decomposition

$$\mathscr{F} = \mathscr{N} \oplus T(G/H),$$

where \mathcal{N} denotes the normal bundle of f. Denoting by $\mathscr{I}(\mathscr{F}) \subset C^{\infty}(\mathscr{F})$ the linear space of G-invariant sections of \mathscr{F} we have the following.

THEOREM 1. If $f: G/H \to S^n$ is a full equivariant harmonic embedding then $\mathscr{I}(\mathscr{F}) \subset K(f)$.

Proof. Write $\rho: G \to SO(n+1)$ for the monomorphism satisfying (3); we first claim that

(4)
$$\Delta^{c} \rho = 2e(f) \cdot \rho,$$

where ρ is considered as a matrix-valued function on which the Laplacian Δ^G of G acts componentwise. Indeed, by the equivariant equation (3), as $\tau_g(o) = \pi(g), g \in G$, we have

$$(\Delta^{G}\rho)(g) \cdot f(o) = (\Delta^{G}(f \circ \pi))(g) = (\Delta^{G/H}f)(\pi(g))$$
$$= 2e(f) \cdot f(\pi(g)) = 2e(f) \cdot \rho(g) \cdot f(o)$$

The same argument works with o replaced by any point of G/H since the group metric is biinvariant. As f is full, (4) follows.

Now, putting $v \in \mathcal{I}(\mathcal{F})$, by Section 1, we have to show that

$$\Delta^{G/H}\hat{v} = 2e(f)\cdot\hat{v}.$$

Indeed, G-invariance of v and (4) implies that

$$\begin{aligned} (\Delta^{G/H}\hat{v})(\pi(g)) &= (\Delta^G(\hat{v} \circ \pi))(g) = (\Delta^G \rho)(g) \cdot \hat{v}(o) \\ &= 2e(f) \cdot \rho(g) \cdot \hat{v}(o) = 2e(f) \cdot \hat{v}(\pi(g)), \qquad g \in G; \end{aligned}$$

and this completes the proof.

The principal property of infinitesimally rigid harmonic maps to be exploited subsequently is contained in the next result.

THEOREM 2. Let $f: G/H \to S^n$ be a full equivariant infinitesimally rigid harmonic embedding with associated monomorphism $\rho: G \to SO(n+1)$. Then precomposition with f yields a linear isomorphism $\Phi: \mathfrak{z} \to \mathscr{I}(\mathscr{F})$, where \mathfrak{z} denotes the Lie algebra of the centralizer of $\rho(G)$ in SO(n+1). Further, Φ composed with the evaluation map $\varepsilon_o: C^{\infty}(\mathscr{F}) \to \mathscr{F}_o$ maps isomorphically onto Fix (H, \mathscr{F}_o) , where H acts on \mathscr{F}_o via ρ .

Proof. Put $X \in \mathfrak{z}$; now consider the one-parameter subgroup (ϕ_t) of isometries of S^n induced by X which is contained in the identity component Z_0 of the centralizer of $\rho(G) \subset SO(n+1)$. Here, for $g \in G$ and $x \in G/H$, we have

$$(g \cdot (X \circ f))(x) = \rho(g)_* (X_{f(x)}) = \rho(g)_* \frac{d}{dt} (\phi_t(f(x))) \Big|_{t=0}$$

= $\frac{d}{dt} (\rho(g) \circ \phi_t) (f(x)) \Big|_{t=0} = \frac{d}{dt} (\phi_t \circ \rho(g)) (f(x)) \Big|_{t=0}$
= $\frac{d}{dt} (\phi_t \circ f) (\tau_g(x)) \Big|_{t=0} = ((X \circ f) \circ \tau_g)(x),$

that is the vector field $X \circ f$ along f is G-invariant and on putting $\Phi(X) = X \circ f$, $X \in \mathfrak{z}$, we obtain a well-defined linear map $\Phi: \mathfrak{z} \to \mathscr{I}(\mathscr{F})$. As f is full and the connected components of the zero-set of a Killing vector field on S^n are totally geodesic submanifolds we conclude that Φ is injective. To prove that Φ is surjective let $v \in \mathscr{I}(\mathscr{F})$. By Theorem 1, $v \in K(f)$ (= PK(f)) and infinitesimal rigidity of f implies the existence of a Killing vector field $X \in so(n+1)$ with $v = X \circ f$. We claim that $X \in \mathfrak{z}$. Invariance of v implies that

$$(\rho(g)_*X) \circ f = (X \circ f) \circ \tau_g = (X \circ \rho(g)) \circ f, \quad g \in G,$$

and so the Killing vector field $\rho(g)_* X - X \circ \rho(g)$ vanishes on im (f), that is we obtain

$$\rho(g)_* X = X \circ \rho(g), \qquad g \in G.$$

Denote by $(\phi_t) \subset SO(n+1)$ the one-parameter group of isometries induced by X; the last equation translates then as

$$\rho(g) \circ \phi_t = \phi_t \circ \rho(g), \qquad t \in \mathbb{R},$$

or equivalently, $(\phi_t) \subset Z_o$. Thus $X \in \mathfrak{z}$, and Φ is onto. The restriction $\varepsilon_o | \mathscr{I}(\mathscr{F})$ maps $\mathscr{I}(\mathscr{F})$ isomorphically onto Fix (H, \mathscr{F}_o) , since $v \in \mathscr{I}(\mathscr{F})$ is determined by its value v_o at the base point, and it is clearly necessary and sufficient to have $v_{\tau_h(o)} = h \cdot v_o$ for all $h \in H$.

3. Infinitesimal flexibility

The main result of this section is the following.

THEOREM 3. Let $f: G/H \to S^n$, $n \ge 2$, be a full equivariant infinitesimally rigid harmonic embedding with associated monomorphism $\rho: G \to SO(n+1)$. Then, either fis onto or im (f) is a non-principal orbit of the action of G on S^n via ρ . In particular, in the latter case, if $H \subset G$ is connected (for example if G/H is simply connected) then im (f) is a singular orbit.

Proof. Assuming that the orbit $\operatorname{im}(f) \subset S^n$ is principal we show that $\operatorname{im}(f) = S^n$. By a well-known property of principal orbits [4] H acts trivially on the normal space \mathcal{N}_o (considered as a linear slice at $f(o) \in S^n$), that is $\mathcal{N}_o \subset \operatorname{Fix}(H, \mathcal{F}_o)$. We first claim that the closed subgroup $K = \rho(G) \cdot Z_0 \subset SO(n+1)$ acts on S^n transitively. Indeed, the tangent space $T_{f(o)}(K(f(o)))$ clearly contains $T_{f(o)}(\operatorname{im}(f))$ and, by Theorem 2, it contains $\mathcal{N}_o \subset \varepsilon(o)(\mathfrak{z})$. Thus K(f(o)) is open; since K is compact, the claim follows.

Next, we assert that all orbits of G on Sⁿ have the same type. If $y, y' \in S^n$ then choose $k = \rho(g) \cdot z \in K$, $g \in G$, $z \in Z_0$, such that y' = k(y). Then

$$G_{y'} = G_{\rho(g)(z(y))} = g \cdot G_{z(y)} \cdot g^{-1} = g \cdot G_{y} \cdot g^{-1},$$

or equivalently, $(G_y) = (G_{y'})$.

By Borel's classification of actions on S^n with one isotropy type (cf. [4, p. 196]), it follows that G is either transitive on S^n , that is we have im $(f) = S^n$, or $G = S^3$ and G

acts freely on S^n . (Note that if $G = S^1$ the harmonic map f is either constant or maps onto a closed geodesic and hence fullness of f implies that $n \leq 1$, which is excluded.) Assuming that $G = S^3$, as G acts freely on S^n we have $H = \{1\}$, in particular,

$$\dim \mathfrak{z} = \dim \operatorname{Fix} (H, \mathscr{F}_{\mathfrak{o}}) = \dim \mathscr{F}_{\mathfrak{o}} = n.$$

By the proof of Theorem 2, Z_0 acts transitively on S^n since $T_{f(o)}(Z_0(f(o))) = \mathscr{F}_o$. For reasons of dimensions, Z_0 is actually diffeomorphic with S^n and hence n = 3. Thus $f: G \to S^3$ is onto and the proof is finished.

REMARK. If G/H is symmetric and $f: G/H \to S^n$ is an equivariant harmonic diffeomorphism then f is totally geodesic (cf. [10, proof of Corollary 1]). Further, if G/H is irreducible then the pull-back of the metric on S^n via f is G-invariant and so coincides (up to a constant multiple) with the one given on G/H, that is we obtain that $f: G/H \to S^n$ is homothetic. Note that any homothetic diffeomorphism $f: G/H \to S^n$ is infinitesimally rigid [9]. In particular, if G/H is irreducible symmetric then a harmonic diffeomorphism $f: G/H \to S^n$ with e(f) = const. is infinitesimally rigid if and only if f is homothetic (compare with Corollary 2 in [10]). On the other hand, any conformal diffeomorphism of S^2 is infinitesimally rigid but non-isometric unless e(f) = const. [10].

EXAMPLE 1. The standard Veronese surface $f : \mathbb{R}P^2 \to S^4$ is infinitesimally rigid [6]. Denoting by $\rho : SO(3) \to SO(5)$ the associated monomorphism, as $\mathbb{R}P^2$ is nonorientable, im $(f) \subset S^n$ is a singular orbit [4, p. 188], in accordance with Theorem 3. Also, the isotropy subgroup O(2) is easily seen to act on \mathscr{F}_o with trivial fixed point set.

In the case when $H = \{1\}$ Theorem 3 reduces to the following.

COROLLARY 1. With the exception of homothetic diffeomorphisms $f : G \to S^3$, any full harmonic embedding $f : G \to S^n$, $n \ge 2$, with e(f) = const. is infinitesimally non-rigid.

For homogeneous hypersurfaces Theorem 3 can be sharpened as follows.

COROLLARY 2. Let G/H be naturally reductive. Then any harmonic codimensionone embedding $f: G/H \to S^n$, $n \ge 2$, with e(f) = const., is infinitesimally non-rigid.

Proof. Assuming, on the contrary, that $f: G/H \to S^n$ is infinitesimally rigid, Theorem 3 implies that the orbit im $(f) \subset S^n$ is exceptional. (Obviously, im $(f) \subset S^n$ cannot be singular since otherwise G acts transitively on S^n .) As im (f) is nonprincipal we have Fix $(H, \mathcal{N}_o) \neq \mathcal{N}_o$ and H acts on the line \mathcal{N}_o with trivial fixed point set. Thus, according to the terminology of [4, p. 185], im (f) is special exceptional. As $n \ge 2$, we have $H_1(S^n; \mathbb{Z}_2) = 0$ which contradicts [4, 3.12. Theorem].

REMARK. Fullness of f in Corollary 2 is essential since, by [9], the canonical inclusion $f: SO(n)/SO(n-1) \rightarrow S^n$ is infinitesimally rigid.

EXAMPLE 2. The Clifford map $f: \mathbb{T}^2 \to S^3$ defined by

 $f(\phi,\psi) = (\cos\phi \cdot \cos\psi, \sin\phi \cdot \cos\psi, \cos\phi \cdot \sin\psi, \sin\phi \cdot \sin\psi), \quad 0 \le \phi, \psi < 2\pi,$

is a full equivariant minimal hypersurface and so, by Corollary 1 or 2, infinitesimally non-rigid. Hence, by [9, Proposition 1], $\dim K(f) > \dim so(4) = 6$. In fact, $\dim K(f) = 7$ as the following argument shows.

Since e(f) = 1, to compute dim K(f) we have to determine the vector space of vector functions $\hat{v} : \mathbb{T}^2 \to \mathbb{R}^4$ satisfying

$$\Delta^{\mathsf{T}^2}\hat{v} = 2\hat{v}$$

with the linear constraint

$$\langle f, \hat{v} \rangle = 0$$

By (5), the components of \hat{v} are eigenfunctions of Δ^{T^2} and hence [1] we have $\hat{v} = A \cdot f$, where A is a (4 × 4) matrix. Substituting this into $\langle f, \hat{v} \rangle$ we obtain a fourth-order homogeneous trigonometric polynomial whose coefficients, by (6), have to vanish. An easy computation shows that A has the form

$$A = \begin{bmatrix} 0 & \alpha & \beta & e_{1} \\ -\alpha & 0 & e_{2} & \gamma \\ -\beta & e_{3} & 0 & \delta \\ e_{4} & -\gamma & -\delta & 0 \end{bmatrix},$$

where $\alpha, \beta, \gamma, \delta, e_i \in \mathbb{R}$, i = 1, 2, 3, 4, and $e_1 + e_2 + e_3 + e_4 = 0$. Thus, dim K(f) = 7 and the claim follows.

References

- 1. M. BERGER, P. GAUDUCHON and E. MAZET, Le spectre d'une variété Riemannienne, Lecture Notes in Mathematics 194 (Springer, Berlin, 1971).
- 2. A. BOREL, 'Some remarks on Lie groups transitive on spheres and tori', Bull. Amer. Math. Soc., 55 (1949), 580-587.
- 3. G. BREDON, Introduction to compact transformation groups (Academic Press, New York, 1972).
- 4. J. EELLS and L. LEMAIRE, 'A report on harmonic maps', Bull. London Math. Soc., 10 (1978), 1-68.
- 5. J. EELLS and J. H. SAMPSON, 'Harmonic mappings of Riemannian manifolds', Amer. J. Math., 86 (1964), 109-160.
- 6. A. LEE and G. TOTH, 'On variation spaces of harmonic maps into spheres', Acta Sci. Math., to appear.
- 7. R. T. SMITH, 'Harmonic mappings of spheres', Thesis, Warwick University, 1972.
- G. TOTH, 'Construction des applications harmoniques non rigides d'un tore dans la sphère', Annals of global analysis and geometry, 1 (1983), 105–118.
- 9. G. TOTH, 'On rigidity of harmonic mappings into spheres', J. London Math. Soc. (2), 26 (1982), 475-486.
- 10. G. TÓTH, 'Flexible harmonic maps into spheres', Symposium on global Riemannian geometry (Ellis Horwood, Chichester, 1982).

The Ohio State University, Department of Mathematics, 231 West 18th Avenue, Columbus, Ohio 43210, U.S.A.

180