Flexible harmonic maps into spheres

Gábor Tóth

Mathematics Institute, Hungarian Academy of Sciences, Budapest

1. INTRODUCTION AND PRELIMINARY RESULTS

In [15], to any harmonic map $f:M\to S^n$ [6] of a compact oriente Riemannian manifold M into the Euclidean n-sphere S^n there is associate a finite-dimensional vector space K(f) consisting of all Jacobi fields ν alor f [6] whose generalized divergence trace $\langle f*,\nabla\nu\rangle$ ([11], p. 113) is zerowhere f* is the differential of f; ∇ and $\langle\cdot,\cdot\rangle$ denote the induced connectic and metric of the "Riemannian-connected bundle $\mathscr{F}\otimes \Lambda*(T*(M))$ (\mathscr{F} f $(T(S^n))$ resp.). Denoting by $PK(f) \subseteq K(f)$ the linear subspace of a projectable elements, we have $so(n+1) \circ f \subseteq PK(f)$ [14], where so(n+1) considered as the Lie algebra of all infinitesimal isometries of S^n . The material f is said to be infinitesimally rigid [15] if $so(n+1) \cdot f = PK(f)$ holds.

To introduce the corresponding local notion we note first that a vectorield ν along f is a harmonic variation of f (i.e. $f_t = \exp \cdot (t\nu)$: $M \to S^n$ harmonic for all $t \in \mathbb{R}$) if and only if $\nu \in K(f)$ with $\|\nu\|$ a constant [13].

The variation space V(f) of f (i.e. the space consisting of all harmon variations of f) can then be considered as a subset of K(f) with $V(f) = \mathbb{I}$ $V_0(f)$, where $V_0(f) = \{V \in K(f) | ||v|| = 1\}$. The map f is said to be local rigid if for every projectable harmonic variation v there exists 1-parameter subgroup $(\varphi_t) \in SO(n+1)$ such that $f_t = \exp \cdot (tv) = \varphi_t \cdot f$ holfor all $t \in \mathbb{R}$. Obviously, infinitesimal and local rigidity is preserved und performing isometries of S^n .

The purpose of this paper is to study infinitesimal and local rigidity harmonic maps and to describe a variety of classical examples from the viewpoint. In Section 2 we first give a necessary and sufficient condition for the infinitesimal rigidity of harmonic maps $f:M \to S^n$.

As direct consequences we obtain that the inclusion $f:S^m \to S^n$, $m \le$ the Veronese surface $f:S^2 \to S^4$ [2] and the Delaunay map $f:T^2 \to S^2$ [6] a infinitesimally rigid. Second, we prove that full infinitesimally righarmonic embeddings $f:M \to S^n$ with energy density e(f) a constant [6] a equivariant with respect to a faithful representation $\rho:i(M)_0 \to SO(n+1)$

where $i(M)_0$ denotes the identity component of the full isometry group of M (Theorem 1). Section 3 is devoted to the rigidity properties of the standard minimal immersions $f:S^m \to S^n$ defined by spherical harmonics of order s [4].

For s = 2 we show that f is infinitesimally rigid if and only if m = 2 (in which case the map $f:S^2 \to S^4$ is the Veronese surface). Moreover, for odd $m \ge 3$, the standard minimal immersions are non locally rigid (Theorem 2).

All manifolds, maps, bundles, etc., considered here will be of class C^{∞} . The report [6] is our general reference for the basic notions of the theory of harmonic maps and we adopt the sign conventions of [8].

2. INFINITESIMAL RIGIDITY AND EQUIVARIANCE OF HARMONIC MAPS

Let M be a compact oriented Riemannian manifold and consider a harmonic map $f:M \to S^n$. Denote Span (f) the intersection of all (closed) totally geodesic submanifolds of S^n which contain the image of f. Then Span $(f) \subset S^n$ is a totally geodesic submanifold. The map f is said to be full if Span $(f) = S^n$. Our first result gives a simple criterion for the infinitesimal rigidity of f as follows:

Proposition 1 For any harmonic map $f:M \to S^n$ with $r = \dim \text{Span}(f)$ we have

dim
$$PK(f) \ge \frac{r(r+1)}{2} + (n-r)(r+1),$$

and equality holds if and only if f is infinitesimally rigid.

Proof By $so(n+1) \cdot f \subset PK(f)$ [14] the linear map $\Phi : so(n+1) \to PK(f)$, $\Phi(X) = X \circ f$, $X \in so(n+1)$, is well defined. Thus dim $PK(f) \ge \dim so(n+1)$ — dim ker Φ is valid. Moreover, f is infinitesimally rigid if and only if Φ is surjective, i.e. when equality holds. On the other hand, if $X \in \ker \Phi$ then X vanishes on Span (f) ([7], p.60) and so there is a linear isomorphism between the elements of ker Φ and the infinitesimal isometries defined on the cut locus of Span $(f) \subset S^n$. Hence ker $\Phi \cong so(n-r)$, which completes the proof. \Box

Example 1 According to a result of [15], dim K(f) = m(m+1)/2 + (n-m)(m+1), where $f:S^m \to S^n$ is the inclusion. By Proposition 1 f is infinitesimally rigid.

Example 2 For any harmonic embedding $f: T^2 \to S^3$ with $e(f) = \frac{1}{2}$ we have dim K(f) = 7 (>6) [14] and hence f is non-infinitesimally rigid.

Example 3 By [9], dim K(f) = 10 for the Veronese surface $f:S^2 \to S$ Again, by Proposition 1, the Veronese surface is infinitesimally rigid.

Example 4 Let α be the periodic solution of the pendulum equation

$$\ddot{x} + \sin x \cos x = 0$$

with initial values $\alpha(0) = 0$ and $\dot{\alpha}(0) = d$ (0 < |d| < 1). Denoting by ω th period of α , parametrize the 2-torus T^2 with the Euclidean coordinates $0 : \varphi < \omega$ and $0 \le \psi < 2\pi$. Then the Delaunay map $f: T^2 \to S^2$ [6] defined by

$$f(\varphi, \psi) = (-\cos \psi \cos \alpha(\varphi), -\sin \psi \cos \alpha(\varphi), \sin \alpha(\varphi)),$$

$$0 \le \varphi < \omega, 0 \le \psi < 2\pi,$$

is harmonic with energy density $e(f) = \frac{1}{2}(\dot{\alpha}^2 + \cos^2 \alpha)$. In what follows w compute dim K(f). Identifying vectors tangent to $S^2 \subset \mathbb{R}^3$ with thei translates at the origin, any vector field ν along f gives rise to a map $\hat{\nu}: T^2 - \mathbb{R}^3$ with $\langle f, \hat{\nu} \rangle = 0$. According to a result of [9], $\nu \in K(f)$ if and only if

(1)
$$\Delta v_i = (\dot{\alpha}^2 + \cos^2 \alpha) v_i, \quad i = 1, 2, 3,$$

is valid, where $\hat{v} = (v_1, v_2, v_3)$ and Δ denotes the Laplacian on T^2 . For fixed i = 1, 2, 3, the scalar v_i , being considered as a doubly periodic function o \mathbb{R}^2 , has Fourier series expansion

$$v_i(\varphi, \psi) = p_0(\varphi) + \sum_{k=1}^{\infty} (p_k(\varphi)\cos(k\psi) + q_k(\varphi)\sin(k\varphi)),$$

$$0 \le \varphi < \omega, \qquad 0 \le \psi < 2\pi,$$

which splits (1) into the system

(2)_k
$$\ddot{y}_k + (\dot{\alpha}^2 + \cos^2 \alpha - k^2)y_k = 0, \quad k = 0, 1, 2, ...,$$

and p_k , q_k are solutions of $(2)_k$. On the other hand, by $\dot{\alpha}^2 + \sin^2 \alpha = d^2$, we have $\dot{\alpha}^2 + \cos^2 \alpha = d^2 - 1 + 2\cos^2 \alpha < 2$, i.e. for $k \ge 2$ we have $\dot{\alpha}^2 + \cos^2 \alpha - k^2 < 0$ and hence periodicity of p_k and q_k imply that $p_k = q_k = 0$, $k \ge 2$, holds. Moreover, the function

$$\varphi \to \cos \alpha(\varphi) \int_0^{\varphi} \frac{\mathrm{d}t}{\cos^2 \alpha(t)}$$

is a non-periodic solution of (2)₁ and thus there exist a_i , $b_i \in \mathbb{R}$ such that

$$p_1 = a_i \cos \alpha$$
 and $q_1 = b_i \cos \alpha$

hold. Finally, $\sin \alpha$ being a periodic solution of (2)₀, we have

$$p_0 = c_i \sin \alpha + d_i y_0, \quad c_i, d_i \in \mathbb{R}$$

where y_0 is the periodic solution of $(2)_0$ with initial values $y_0(0) = 1$, $\dot{y}_0 = 0$, and if it is not periodic we put $d_i = 0$. (Note that y_0 can be expressed in the singular integral form

$$\varphi \to \sin \alpha(\varphi) \int_{\varphi}^{\omega/4} \frac{\mathrm{d}t}{\sin^2 \alpha(t)}$$

Thus we obtain that

$$v_i(\varphi, \psi) = (a_i \cos \psi + b_i \sin \psi)\cos \alpha + c_i \sin \alpha + d_i y_0,$$

$$0 \le \varphi < \omega, 0 \le \psi < 2\pi,$$

holds for i=1, 2, 3. It remains only to satisfy the condition

(3)
$$0 = \langle f, \hat{v} \rangle$$

$$= -\cos \psi \cos \alpha(\varphi) v_1(\varphi, \psi)$$

$$-\sin \psi \cos \alpha(\varphi) v_2(\varphi, \psi)$$

$$+\sin \alpha(\varphi) v_3(\varphi, \psi), \quad 0 \leq \varphi < \omega, 0 \leq \psi < 2\pi.$$

A straightforward computation, comparing the initial values of the various solutions, shows that (3) is valid if and only if $a_1 = b_2 = c_3 = d_1 = d_2 = d_3 = 0$, $a_2 + b_1 = a_3 - c_1 = b_3 - c_2 = 0$, i.e. putting $\rho = b_1$, $\sigma = c_1$ and $\tau = c_2$ we have

$$\hat{v}(\varphi, \psi) = (\rho \sin \psi \cos \alpha(\varphi) + \sigma \sin \alpha(\varphi), \\
-\rho \cos \psi \cos \alpha(\varphi) + \tau \sin \alpha(\varphi), \\
(\alpha \cos \psi + \tau \sin \psi) \cos \alpha(\varphi)), \quad 0 \le \varphi < \omega, 0 \le \psi < 2\pi;$$

in particular, dim K(f) = 3. Applying Proposition 1 we obtain that the Delaunay map $f: T^2 \to S^2$ is infinitesimally rigid. Moreover, max rank f = 2 implies [15] that f is locally rigid as well.

In the rest of this section we show that certain infinitesimally rigid harmonic maps $f:M \to S^n$ are equivariant with respect to isometries. More precisely, we have the following:

Theorem 1 Let $f:M \to S^n$ be a full infinitesimally rigid harmonic map with e(f)=const such that all elements of K(f) are projectable. Then there exists a (unique) homomorphism $\rho:i(M)_0 \to SO(n+1)$ of the identity component of the group of isometries of M into SO(n+1) such that f is ρ -equivariant.

Remark The converse of Theorem 1 does not hold in general, as the following example shows:

Example 5 The harmonic embedding $f: T^2 \to S^3$ defined by

$$f(\varphi,\psi) = \left(\frac{1}{\sqrt{2}}\cos\varphi, \frac{1}{\sqrt{2}}\sin\varphi, \frac{1}{\sqrt{2}}\cos\psi, \frac{1}{\sqrt{2}}\sin\psi\right),$$

$$0 \le \varphi, \psi < 2\pi$$

is equivariant with respect to the inclusion ρ : $T^2 \to SO(4)$ (as a maximal torus) given by

$$\rho(\varphi, \, \psi) = \operatorname{diag} \left(\begin{bmatrix} \cos \varphi - \sin \varphi \\ \sin \varphi \cos \varphi \end{bmatrix}, \begin{bmatrix} \cos \psi - \sin \psi \\ \sin \psi \cos \psi \end{bmatrix} \right),$$

 $0 \le \varphi$, $\psi < 2\pi$, though, by $e(f) = \frac{1}{2}$, Example 2 shows that f is no infinitesimally rigid.

In order to prove Theorem 1 first we state the following:

Lemma Let $f: M \to S^n$ be a harmonic map with constant energy density. Then $f_*(X) \in K(f)$ holds for any infinitesimal isometry X of M.

Proof Denote by $(\varphi_t) \subset i(M)_0$ the one-parameter group of isometries induced by X. Since $f_t = f \circ \varphi_t : M \to S^n$, $t \in \mathbb{R}$, is harmonic, $\partial f_t / \partial t \Big|_{t=0} = f_*(X)$ is a Jacobi field along f [6], i.e. it remains only to prove that its generalized divergence vanishes. Fixing $x \in M - \operatorname{Zero}(X)$, choose a local orthonormal frame $\{E^1, \ldots, E^n\}$ defined around x with $[X, E^i] = 0$. Then, using symmetry of the second fundamental form $\beta(f)$, we have

trace
$$\langle f^*, \nabla (f^*(X)) \rangle = \sum_{i=1}^m \langle f^*(E^i), \nabla_{E_i}(f^*(X)) \rangle$$

$$= \sum_{i=1}^m \langle f^*(E^i), (\nabla_E f^*) X \rangle + \sum_{i=1}^m \langle f^*(E^i, f^*(\nabla_E X)) \rangle$$

$$= \sum_{i=1}^m \langle f^*(E^i), (\nabla_X f^*) E^i \rangle + \sum_{i=1}^m \langle f^*(E^i), f^*(\nabla_E X) \rangle$$

$$= \sum_{i=1}^m \langle f^*(E^i), \nabla_X (f^*(E^i)) \rangle - \sum_{i=1}^m \langle f^*(E^i), f^*(\nabla_X E^i) \rangle$$

$$+ \sum_{i=1}^m \langle f^*(E^i), f^*(\nabla_E X) \rangle$$

$$= X(e(f)) + \sum_{i=1}^m \langle f^*(E^i), f^*([E^i, X]) \rangle = 0.$$

Since $Zero(X) \in M$ is nowhere dense, we obtain trace $(f^*, \nabla (f^*(X))) = 0$, which completes the proof. \square

Remark Differentiating the equation $\Delta f_t = 2e(f_t)f_t$ by t at 0, where f_t is

considered as a function taking its values in \mathbb{R}^{n+1} , and using a result of [9], a different proof of the lemma can be obtained.

Proof of Theorem 1 Let $f:M \to S^n$ be as in the theorem and put $g \in i(M)_0$. Identifying the elements of the Lie algebra of $i(M)_0$ with the infinitesimal isometries of M, compactness of $i(M)_0$ implies the existence of an infinitesimal isometry X of M such that $\exp X = g$; in particular, $\varphi_1 = g$, where (φ_t) is the one-parameter group of isometries induced by X. By the lemma, $f*(X) \in K(f) = PK(f)$ and infinitesimal rigidity of f yields that $f*(X) = Y \circ f$ holds for some $Y \in so(n + 1)$. Thus the infinitesimal isometries X and Y are f-related [7] and it follows that $f \circ \varphi_t = \psi_t \circ f$, $f \in \mathbb{R}$, is valid, where $(\psi_t) \subset SO(n + 1)$ is the one-parameter subgroup induced by Y. In particular, we obtain the existence of an isometry $\tilde{g} \in SO(n + 1)$ such that

 $f \circ g = \tilde{g} \circ f$ holds. Since f is full, \tilde{g} is uniquely determined. Putting $\tilde{g} = \rho(g)$ we get a homomorphism $\rho: i(M)_0 \to SO(n+1)$ such that f is ρ -equivariant and the proof is finished.

Corollary 1 Let M be symmetric and $f:M \to S^n$ a full infinitesimally rigid harmonic embedding with constant energy density. Then the second fundamental form $\beta(f) = \nabla f *$ of f is orthogonal to im f, i.e. we have $\langle \beta(f)(X, Y), f *(Z) \rangle = 0$ for all $X, Y, Z \in \Re(M)$.

Proof Denote by $\omega \in \Theta^2T^*(M)$ the pull-back of the metric tensor of S^n via f. By Theorem 1 there exists a monomorphism $\rho: i(M)_0 \to SO(n+1)$ such that f is ρ -equivariant. Thus, for $X, Y \in \mathcal{R}(M)$ and $g \in i(M)_0$, we have $(g*\omega)(X,Y) = \omega(g*(X), g*(Y)) = \langle f*(g*(X)), f*(g*(Y)) \rangle = \langle \rho(g)*(f*(X)), \rho(g)*(f*(Y)) \rangle = \langle f*(X), f*(Y) \rangle = \omega(X, Y)$, i.e. the symmetric 2-form ω is $i(M)_0$ -invariant. Since M is symmetric it follows that ω is parallel ([10], p.174), i.e. for any $X, Y, Z \in \mathcal{R}(M)$

$$(\nabla_X \omega) \; (Y, \; Z) = X(\omega(Y, Z)) - \omega(\nabla_X Y, \; Z) - \omega(Y, \; \nabla_X Z) = 0$$

is valid, or equivalently

$$X\langle f*(Y), f*(Z)\rangle = \langle f*(\nabla_X Y), f*(Z)\rangle + \langle f*(Y), f*(\nabla_X Z)\rangle.$$

On the other hand, we have

$$X(f*(Y), f*(Z)) = \langle \nabla_X(f*(Y)), f*(Z) \rangle + \langle f*(Y), \nabla_X(f*(Z)) \rangle$$

and subtracting this equation from the above we obtain

$$0 = \langle \beta(f)(X, Y), f*(Z) \rangle + \langle \beta(f)(X, Z), f*(Y) \rangle,$$

where

$$\beta(f)(X, Y) = (\nabla_X f_*(Y)) - f_*(\nabla_X Y).$$

Hence, using the symmetry of $\beta(f)$ [6], we get

$$\langle \beta(f)(X, Y), f_*(Z) \rangle = \langle \beta(f)(Y, X), f_*(Z) \rangle$$

$$= -\langle \beta(f)(Y, Z), f_*(X) \rangle$$

$$= -\langle \beta(f)(Z, Y), f_*(X) \rangle$$

$$= \langle \beta(f)(Z, X), f_*(Y) \rangle$$

$$= \langle \beta(f)(X, Z), f_*(Y) \rangle$$

$$= -\langle \beta(f)(X, Y), f_*(Z) \rangle,$$

which completes the proof.

As a direct consequence we obtain the following characterization isometries of S^n :

Corollary 2 A diffeomorphism $f:S^n \to S^n$ is isometric if and only if f is infinitesimally rigid harmonic map with constant energy density.

Proof The identity id_{S^n} , and hence any isometry of S^n , is infinitesima rigid as it was established in [15]. Conversely, the hypotheses of Corolla 1 being satisfied, f is totally geodesic, from which we easily deduce that f isometric.

Example 6 Any conformal diffeomorphism $f:S^2 \to S^2$ is infinitesimal rigid. Indeed, it is just a reformulation of a result of Smith ([11], p] 113–117). Clearly, $e(f) \neq \text{const unless } f \text{ is isometric.}$ (We note that $V(f) = \text{since deg } f = \pm 1$ [13]; in particular f is locally rigid.)

3. STANDARD MINIMAL IMMERSIONS

Consider the eigenspace $\mathcal{H}_{\lambda(s)}$ of the Laplacian $\Delta = \Delta^{S^m}$ of the Euclidea m-sphere S^m corresponding to the eigenvalue $\lambda(s) = s(s+m-1), s \in \mathbb{N}$ An element of $\mathcal{H}_{\lambda(s)}$ is the restriction (to S^m) of a homogeneous harmoni polynomial on \mathbb{R}^{m+1} of degree s and so dim $\mathcal{H}_{\lambda(s)} = n(s) + 1$, where

$$n(s) = (2s + m - 1) \frac{(s + m - 2)!}{s!(m - 1)!} - 1,$$

[2]. Integration over S^m defines an Euclidean scalar product $\langle \cdot, \cdot \rangle$ on $\mathcal{H}_{\lambda(s)}$. Taking an orthonormal base $\{f^1, ..., f^{n(s)} + 1\} \subset \mathcal{H}_{\lambda(s)}$ we have

$$\sum_{i=1}^{n(s)+1} (f^i)^2 = \text{const}$$

[4] and hence, by a suitable normalizing factor N > 0, the standard minimal immersion $f: S^m \to S^{n(s)}$ is defined (up to equivalence) by $f(x) = (Nd^1(x), ..., Nf^{n(s)+1}(x)), x \in S^m$. Then [2] f is full and homothetic such that

$$||f_{*}(x)||^{2} = \frac{1}{k(s)} ||x||^{2}$$

holds for $X \in \mathfrak{R}(S^m)$, where k(s) = m/s(s+m-1). Finally, for odd s, the map $f: S^m \to S^{n(s)}$ is an embedding and, for even s, it factors through the canonical projection $\pi: S^m \to \mathbb{RP}^m$, yielding an embedding $f: \mathbb{R}P^m \to S^{n(s)}$, [4].

Theorem 2 If s = 2 then for the standard minimal immersion $f:S^m \to S^{n(2)}$ we have

dim
$$PK(f) = \frac{1}{24} (5m^4 + 26m^3 + 19m^2 - 50m) - 1.$$

In particular, f is infinitesimally rigid if and only if m = 2 (i.e. $f:S^2 \to S^4$ is the Veronese surface).

Proof The second statement follows from the first by direct computation using Proposition 1. To prove the first, we note that an element of $H_{\lambda(2)}$ is the restriction to S^m of a polynomial $p: \mathbb{R}^{m+1} \to \mathbb{R}$ which has the form

$$p = \sum_{k=1}^{m+1} a_k \varphi_k + 2 \sum_{i < j} b_{ij} \varphi_{ij},$$

where $a_k, b_{ij} \in \mathbb{R}$ with

$$\sum_{k=1}^{m+1} a_k = 0$$

and

 φ_k, φ_{ij} are scalars on S^m defined by $\varphi_k(x) = x_k^2, \varphi_{ij}(x) = x_i x_j, x = (x_1, ..., x_{m+1}) \in S^m, k = 1, ..., m+1, 1 \le i < j \le m+1$ (cf. [2], p.176). The standard minimal immersion $f:S^m \to S^{n(2)}$ is then defined by the more explicit form

$$f(x_1, \ldots, x_{m+1}) = \frac{N}{I - J} \sum_{k=1}^{m+1} \left(x_k^2 - \frac{1}{m+1} \right) \varphi_k + \frac{2N}{J} \sum_{i < j} x_i x_j \varphi_{ij}, x \in S^m,$$

where $I = \|\varphi_k\|^2$, $J = \|\varphi_{ij}\|^2$ and N > 0 is a normalizing factor given by th condition $\|f\| = 1$. A vector field ν along f determines a map $\hat{\nu}: S^m \to \mathcal{H}_{\lambda(2)}$ given by translating the vectors of ν to the origin of $\mathcal{H}_{\lambda(2)}$. Thus $\hat{\nu}$ has the form

$$\hat{v} = \sum_{k=1}^{m+1} a_k \varphi_k + 2 \sum_{i < j} b_{ij} \varphi_{ij},$$

where a_k , b_{ij} are scalars on S^m with

$$\sum_{k=1}^{m+1} a_k = 0.$$

Moreover, by [9], $v \in K(f)$ is equivalent to $\Delta \hat{v} = 2(m+1)v$ since

$$2e(f) = \text{trace } ||f_*||^2 = \frac{m}{k(2)} = 2(m+1).$$

Thus, orthogonality relations for φ_k and φ_{ij} ([2], p. 176) imply that a_k , b_{ij} , $k = 1, ..., m + 1, 1 \le i < j \le m + 1$, belong to $\mathcal{H}_{\lambda(2)}$ and so we have

$$a_r = \sum_{k=1}^{m+1} a_k^r \varphi_k + 2 \sum_{i < j} b_{ij}^r \varphi_{ij}, \qquad r = 1, ..., m+1,$$

and

$$b_{pq} = \sum_{k=1}^{m+1} a_k^{pq} \varphi_k + 2 \sum_{i < j} b_{ij}^{pq} \varphi_{ij}, \quad 1 \le p < q \le m+1,$$

where a_k^r , b_{ij}^r , a_k^{pq} , $b_{ij}^{pq} \in \mathbb{R}$ such that

(1)
$$\sum_{k=1}^{m+1} a_k^r = 0$$
 and $\sum_{k=1}^{m+1} a_k^{pq} = 0$, $r = 1, ..., m+1, 1 \le p < q \le m+1$,

hold. The relation $\sum_{k=1}^{m+1} a_k = 0$ translates into

(2)
$$\sum_{r=1}^{m+1} a_k^r = 0$$
 and $\sum_{r=1}^{m+1} b_{ij}^r = 0$.

(In particular, PK(f) = K(f).) Finally, as in the proof of Theorem 2 in [9], an easy computation shows that $\langle f, \hat{v} \rangle = 0$ is satisfied if and only if the following relations hold:

(3)
$$a_k^k = 0, k = 1, ..., m + 1;$$

(4)
$$a_j^i + a_i^i + 8b_{ij}^{ij} = 0, 1 \le i < j \le m+1;$$

(5)
$$b^{ij} + 2a_i^{ij} = 0, 1 \le i < j \le m+1;$$

(6)
$$b_{ij}^i + 2a_j^{ij} = 0, 1 \le i < j \le m+1;$$

(7)
$$b_{ij}^r + 2a_r^{ij} + 4b_{ri}^j + 4b_{rj}^i = 0, 1 \le r < i < j \le m+1;$$

(8)
$$b_{ij}^r + 2a_r^{ij} + 4b_{rj}^{ir} + 4b_{ir}^{rj} = 0, 1 \le i < r < j \le m+1$$
;

(9)
$$b_{ij}^r + 2a_i^{ij} + 4b_{ir}^{jr} + 4b_{jr}^{ir} = 0, 1 \le i < j \le m+1;$$

(10)
$$b_{ij}^{pq} + b_{ip}^{iq} + b_{iq}^{ip} + b_{ip}^{iq} + b_{jq}^{ip} + b_{pq}^{ij} = 0$$

for all $1 \le i < j < p < q \le m + 1$.

Our task is to compute $\dim K(f)$, i.e. the dimension of the linear space consisting of all solutions of the linear system (1)–(10). In order to solve the system (1)–(10) we first choose the coefficients a_k' , k, r=1, ..., m+1, satisfying the corresponding relations in (1), (2) and (3). These span a linear space of dimension $(m+1)^2 - ((m+1) + m + 1 + m) = m^2 - m - 1$. The second relation of (2) yields that the linear space spanned by the coefficients b_{ij}' , r=1, ..., m+1, $1 \le i < j \le m+1$, has dimension $\binom{m_2+1}{m}$. By relations (5)–(6) the coefficients a_i^{ij} , a_i^{ij} , $1 \le i < j \le m+1$, depend on a_k' . Hence, by the second relation of (1), each row

$$a_1^{ij}, a_2^{ij}, ..., a_{m+1}^{ij}, \quad 1 \le i < j \le m+1,$$

contains exactly three dependent elements, i.e. the dimension of the linear space of independent coefficients a_r^{ij} , r=1,...,m+1, $1 \le i < j \le m+1$, is $(m-2)\binom{m+1}{2}$. Now we have to determine the linear space of coefficients b_{ij}^{pq} , $1 \le i < j \le m+1$, $1 \le p < q \le m+1$, which are independent from $\{a_k^r, b_{ij}^r, a_i^{ij} \mid k, r=1,...,m+1, 1 \le i < j \le m+1\}$. By relation (4) the elements b_{ij}^{ij} , $1 \le i < j \le m+1$, are dependent. The linear space of independent coefficients b_{ij}^{pq} such that i, j, p, q are not mutually distinct, by relations (7), (8) and (9), is spanned by b_{ri}^{rq} , $1 \le r < i < j \le m+1$, b_{rj}^{ir} , $1 \le i < r < j \le m+1$, and b_{ir}^{ir} , $1 \le i < j < r \le m+1$, i.e. its dimension is $3\binom{m+1}{3}$. Finally, the only relations between the coefficients b_{ij}^{pq} for which i, j, p, q are mutually different are in (10). Each equation in (10) contains exactly one coefficient b_{ij}^{pq} with i < j < p < q and so the dimension of the corresponding linear space is $5\binom{m+1}{4}$. Thus we have

dim
$$K(f) = m^2 - m - 1 + {m+1 \choose 2}m + (m-2){m+1 \choose 2} + 3{m+1 \choose 3} + 5{m+1 \choose 4}.$$

and a straightforward computation completes the proof.

Next we turn to the local rigidity of the standard minimal imersions. As has already been established in [9], the Veronese surface $f:S^2 \to S^4$ has trivial variation space, in particular, it is locally rigid. In contrast to this, for $m \ge 3$, we have the following:

Theorem 3 If $m \ge 3$ is odd, then the standard minimal immersion $f:S^m \to S^{n(s)}$ is non-locally rigid.

Proof First we show that local rigidity of $f:S^m \to S^{n(s)}$ implies that f totally geodesic, i.e it maps geodesics of S^m onto geodesics of $S^{m(s)}$ linear [6]. Let $\gamma: \mathbb{R} \to S^m$ be a geodesic with initial vector $X_{x_0} \in T_{x_0}(S^m)$, $x_0 = \gamma(0)$ Because m is odd we can extend the vector X_{x_0} to an infinitesimal isomet $X \in so(m+1)$ with ||X|| = const. Then, denoting by $(\varphi_i) \subseteq SO(m+1)$ to one-parameter group of isometries induced by X, the integral curves $t \in \varphi_i(x)$, $x \in S^m$, are geodesics, in particular the vector field $v = f_*(X)$ along is projectable. On the other hand, by the lemma, $v \in K(f)$ and, since

$$||v|| = ||f_*(x)|| = \frac{1}{\sqrt{k(s)}} ||x|| = \text{const},$$

we get $v \in V(f)$. Local rigidity of f implies the existence of a one-parameter group $(\varphi_t) \subset SO(n(s)+1)$ of isometries such that $f_t = \exp \circ (tv) = \psi_t \circ f$ holds for all $t \in \mathbb{R}$. Thus, if Y denotes the infinitesimal isometry induced f (ψ_t) then $f_*(X) = Y \circ f$, i.e. the vector fields f and f are f-related. Follows that $f \circ \varphi_t = \psi_t \circ f$ is valid for all $f \in \mathbb{R}$, i.e. the geodesic f f is mapped under f to the geodesic f exp f since $f(\varphi_t(x_0)) = \psi_t(f(x_0)) = \exp(tv_{x_0})$, $f \in \mathbb{R}$, and hence f is totally geodesic. Clearly, the image of f is then a totally geodesic submanifold of f which contradices the fullness of f. Thus the theorem is proved. f

The only property of the domain used in the proof of Theorem 3 is th extendability of a given vector X_{x_0} to an infinitesimal isometry X with ||X| = const. Thus, by the same argument, we get the following:

Corollary 3 Let M be either an odd Euclidean sphere or a compact Li group with biinvariant metric. Then any full harmonic homotheti embedding $f:M \to S^n$, with dim M < n, is non-locally rigid.

In particular, the harmonic embedding $f:T^2\to S^3$ of Example 2 i non-locally rigid.

Remark According to Calabi [3] and Do carmo and Wallach [4] ful isometric minimal immersions of the sphere $S_{k(s)}^m$ of constant sectiona curvature k(s) into $S^{n(s)}$ are rigid, provided that $s \leq 3$, i.e. for any two sucl maps $f', f'': S_{k(s)}^m \to S^{n(s)}$ there exists an isometry $\varphi \in O(n(s)+1)$ with $\varphi \circ f = f''$. On the other hand, non-local rigidity of the standard minima immersion $f: S^m \to S^{n(s)}$, for odd m and $s \leq 3$, and the rigidity theorem above imply the existence of a harmonic variation $v \in V(f)$ along which the deformed harmonic maps $f_i = \exp \circ (tv)$ will not be in general homothetic Thus we have examples of homothetic minimal immersions which are rigid among homothetic minimal immersions but non-rigid among harmonic maps.

ACKNOWLEDGEMENTS

We thank Professor J. Eells for valuable discussions on harmonic maps. As for the rigidity of the Delaunay map we are indebted to Professor A. Elbert for his useful advice.

REFERENCES

- [1], P. Baird, Harmonic maps with symmetry, harmonic morphisms and deformations of metrics. Thesis, Warwick University (1981).
- [2] M. Berger, P. Gauduchon and E. Mazet, Le spectre d'une variété Riemannienne, Lecture Notes in Mathematics no. 194, Springer Verlag, Berlin (1974).
- [3] E. Calabi, Minimal immersions of surfaces in euclidean spheres. J. Diff. Geom. 1 (1967), 11-125.
- [4] M. Do Carmo and N. Wallach, Minimal immersions of spheres into spheres. Ann. Math. 93 (1971), 43-62.
- [5] J. Eells and H. Sampson, Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86 (1964), 109-160.
- [6] J. Eells and L. Lemaire, A report on harmonic maps. Bull. Lond. Math. Soc. 10 (1978), 1-68.
- [7] S. Kobayashi, Transformation groups in differential geometry. Ergebn. Math. 70 (1972).
- [8] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Interscience, New York (1963).
- [9] A. Lee and G. Toth, On variation spaces of harmonic maps into spheres. In preparation.
- [10] A. Lichnerowicz, Géométrie des groups de transformations, Dunod, Paris (1958).
- [11] R. T. Smith, Harmonic mappings of spheres. Thesis, Warwick University (1972).
- [12] G. Tóth, On variations of harmonic maps into spaces of constant curvature. Ann. Mat. Pura Appl. (IV) 128 (1981), 389-399.
- [13] G. Tóth, On harmonic maps into locally symmetric Riemannian manifolds. Symp. Math. (to appear).
- [14] G. Tóth, Construction des applications harmoniques d'un tore dans la sphère. Ann Global Anal. Geom. (to appear).
- [15] G. Tóth, On rigidity of harmonic maps into spheres. J. Lond. Math. Soc. (to appear).