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1. INTRODUCTION AND PRELIMINARY RESULTS

In [15], to any harmonic map f:M — S§” [6] of a compact oriente
Riemannian manifold M into the Euclidean n-sphere S" there is associate
a finite-dimensional vector space K(f) consisting of all Jacobi fields v alor
f [6] whose generalized divergence trace (f«, Vv) ([11}, p. 113) is zer
where f« is the differential of f; V and (-,-) denote the induced connectic
apd metric of the “Riemannian-connected bundle ¥ ® A»(T+(M) (¥
f (T(S™)) resp.). Denoting by PK(f) < K(f) the linear subspace of &
projectable elements, we have so(n+1)of = PK(f) [14], where so(n+1)
considered as the Lie algebra of all infinitesimal isometries of S”. The m:
f is said to be infinitesimally rigid [15] if so(n + 1) - f = PK(f) holds.

To introduce the corresponding local notion we note first that a vect
field v along f is a harmonic variation of f (i.e. f,=exp- (v): M —> 5"
harmonic for all 1) if and only if v € K(f) with ||v|| a constant [13].

The variation space V(f) of f (i.e. the space consisting of all harmon
variations of f) can then be considered as a subset of K(f) with V(f) =T
Vo(f), where V(f) = {(VeK(@| |v|| = 1}. The map fis said to be loca
rigid if for every projectable harmonic variation v there exists
1-parameter subgroup (¢,) €SO(n+1) such that f, = exp - (tv) = @, - fhol
for all t eR. Obviously, infinitesimal and local rigidity is preserved und
performing isometries of S”.

The purpose of this paper is to study infinitesimal and local rigidity
harmonic maps and to describe a variety of classical examples from tt
viewpoint. In Section 2 we first give a necessary and sufficient condition f
the infinitesimal rigidity of harmonic maps f:M — §".

As direct consequences we obtain that the inclusion f:5” — §", m <
the Veronese surface f:S? — S$* [2] and the Delaunay map f: 7% — S? [6] a
infinitesimally rigid. Second, we prove that full infinitesimally rig
harmonic embeddings f:M — S" with energy density e(f) a constant [6] a
equivariant with respect to a faithful representation p:i(M)o — SO(n + 1
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where i(M)o denotes the identity component of the full isometry group of
M (Theorem 1). Section 3 is devoted to the rigidity properties of the
standard minimal immersions f:5$” — 8" defined by spherical harmonics of
order s [4].

For s = 2 we show that f is infinitesimally rigid if and only if m = 2 (in
which case the map f:5% — S* is the Veronese surface). Moreover, for odd
m = 3, the standard minimal immersions are non locally rigid (Theorem 2).

All manifolds, maps, bundles, etc., considered here will be of class C*.
The report [6] is our general reference for the basic notions of the theory of
harmonic maps and we adopt the sign conventions of [8].

2. INFINITESIMAL RIGIDITY AND EQUIVARIANCE OF HARMONIC
MAPS

Let M be a compact oriented Riemannian manifold and consider a
harmonic map f:M — S". Denote Span (f) the intersection of all (closed)
totally geodesic submanifolds of S” which contaim the image of f. Then
Span (f) € S" is a totally geodesic submanifold. The map fis said to be full
if Span (f) = §". Our first result gives a simple criterion for the infinitesimal
rigidity of f as follows:

Proposition 1 For any harmonic map f:M — S" with r = dim Span 6))
we have

dim PK(f) =

'('; D0 =i i)

and equality holds if and only if f is infinitesimally rigid.

Proof By so(n + 1) - f © PK(f) [14] the linear map @: so(n + 1) —
PK(f), ®(X) = X of, X € so(n+1), is well defined. Thus dim PK(f) = dim
so(n+1) — dim ker @ is valid. Moreover, f is infinitesimally rigid if and
only if @ is surjective, i.e. when equality holds. On the other hand, if X €
ker @ then X vanishes on Span (f) ([7], p.60) and so there is a linear
isomorphism between the elements of ker & and the infinitesimal
isometries defined on the cut locus of Span (f) < S".
Hence ker @ = so(n — r), which completes the proof. O

Example 1 According to a result of [15], dim K(f) = m(m + 1)12 +
(n = m)(m + 1), where f:S™ — S" is the inclusion. By Proposition 1 f is
infinitesimally rigid.

Example 2 For any harmonic embedding f:T? — $° with e(f) = 2 we
have dim K(f) = 7 (>6) [14] and hence f is non-infinitesimally rigid.
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Example 3 By [9], dim K(f) = 10 for the Veronese surface 25§
Again, by Proposition 1, the Veronese surface is infinitesimally rigid.

Example 4 Let a be the periodic solution of the pendulum equation
X+sinxcosx =0
with initial values o(0) = 0 and &(0) = d (0 < |d| < 1). Denoting by w t

period of &, parametrize the 2-torus 72 with the Euclidean coordinates 0 :
@ < wand 0 < y < 2n. Then the Delaunay map f: 72 — §2 [6] defined by

A, ¥) = (~cos y cos a(q), —sin y cos a(g), sin o9)),
Isgp<w0<y<2m,

is harmonic with energy density e(f) = Y%2(é? + cos? a). In what follows w
compute dim K(f). Identifying vectors tangent to $? © R3 with thei
translates at the origin, any vector field v along f gives rise to a map p: 72—
R? with (f, P) = 0. According to a result of [9], v € K(5) if and only if

1) Avi=(& +cos?a)y, i=1,2,3,

is valid, where ¥ = (v,, v,, v3) and A denotes the Laplacian on T2. For fixec
i=1,2, 3, the scalar v;, being considered as a doubly periodic function o
R?, has Fourier series expansion

vi(®, ¥) = po(@) + 2 (Pe(@)cos(ky) + g(@)sin(ke)),
I=sgp<uw, 0<y<2n,
which splits (1) into the system

@ Y+ (@ + cos? o — By,=0, k= 0,1,2, ..,

and py, g, are solutions of (2),. On the other hand, by & + sin?a = &2, we
have & + cos?a = g2 — 1 + 2cos?q < 2,i.e. for k = 2 we have &? + cos?q
— k* < 0 and hence periodicity of p, and g, imply that p; = g, = 0, k=2,
holds. Moreover, the function

o U
@ — cos a(p) fo =00

is a non-periodic solution of (2)1 and thus there exist a, b; € R such that
Pr=a;cosa and q, = b, cos a
hold. Finally, sin « being a periodic solution of (2),, we have

Po = ¢;sin a + dy,, ¢, d;e R
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where yq is the periodic solution of (2), with initial values yo(0) = 1, yo = 0,
and if it is not periodic we put d; = 0. (Note that y, can be expressed in the
singular integral form

dt
sinZaf(r)

¢ — sin o(g) [

Thus we obtain that
'

v{@, ¥) = (a; cos ¥ + b; sin YP)cos a + ¢; sin a + dyyg,
O=sop<w 0=<y<2m,

holds for i=1, 2, 3. It remains only to satisfy the condition

(3) 0 =¢»
= —cos Y cos (@)1, ¥)
= sin ¥ cos a(@)v2(@, ¥)
+ sin o(@)vs(@, V), I<sgp<w < y<2n

A straightforward computation, comparing the initial values of the various
solutions, shows that (3) is valid if and only if a, = by, = ¢c3 = d, = d, = d;
=0,a, +by=a3—c,=b;—c;=0,i.e.puttingp=>b,,0=c;andt =,
we have

W, ¥) = (psin y cos o @) + osin o),
—~p cos P cos (@) + Tsin o),
(a cos i + 7sin Y)cos o @), Isgp<w0sy<2nm

in particular, dim K(f) = 3. Applying Proposition 1 we obtain that the
Delaunay map f: 7% — $? is infinitesimally rigid. Moreover, max rank f = 2
implies [15] that f is locally rigid as well.

In the rest of this section we show that certain infinitesimally rigid
harmonic maps f:M — S” are equivariant with respect to isometries. More
precisely, we have the following:

Theorem 1 Let f:M — S" be a full infinitesimally rigid harmonic map
with e(f)=const such that all elements of K(f) are projectable. Then there
exists a (unique) homomorphism p:i(M)o — SO(n + 1) of the identity
component of the group of isometries of M into SO(n + 1) such that f is
p-equivariant.

Remark The converse of Theorem 1 does not hold in general, as the
following example shows:



160 Flexible harmonic maps into spheres [Ch

Example 5 The harmonic embedding f:7° — $* defined by

1 1
sin @, — cos vy, sin 1Il>,
V2~ V2o 7

cos g,

1
ﬂ%w=(v7

0< @,y <21

is equivariant with respect to the inclusion p: 72 — SO(4) (as a maxims
torus) given by

(@, y) = diag ([;?15 ch?,ssi,',’ 7, [;t;s ;Pc;ssi; ¥)),

0 < @, v <2x, though, by e(f) = 15, Example 2 shows that fis no
infinitesimally rigid.

In order to prove Theorem 1 first we state the following:

Lemma Letf: M — S" be a harmonic map with constant energy density.
Then f.(X) € K(f) holds for any infinitesimal isometry X of M.

Proof Denote by (g,) = i(M), the one-parameter group of isometries
induced by X. Since fi=fo @:M— s ¢ €1R, is harmonic, of/ar |,=0 =
fu(X) is a Jacobi field along f [6], i.e. it remains only to prove that its
generalized divergence vanishes, Fixingxe M — Zero(X), choose a local

orthonormal frame (E', ..., E"} defined around x with [X, E]=0. Then,
using symmetry of the second fundamental form B(f), we have

trace (v, V(X)) = 5 (+(E), V(00

= 2 (B, (Vafo)X) + 3 o(E, (9 p0)
(B, (Vxf)E) + 5 (fo(EY, f+(V )
Fo(EY, Valfo (B = 3. (B, fo(V P
+ 3 (B, f+(V )
= X(e() + Sy+(EY, f-(IE', X]) = 0.

m
2
i=1

m
2
i=1

Since Zero(X) € M is nowhere dense, we obtain trace (fx, V({f+(X))) =0,
which completes the proof. O

Remark Differentiating the equation Af,=2e(f)f, by t at 0, where fiis
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considered as a function taking its values inIR"*!, and using a result of [91,
a different proof of the lemma can be obtained.

Proof of Theorem 1 Let f:M — S" be as in the theorem and put g €
i(M)p. ldentifying the elements of the Lie algebra of i(M), with the
infinitesimal isometries of M, compactness of i(M), implies the existence of
an infinitesimal isometry X of M such that exXp X = g; in particular, ¢, = g,
where (@,) is the one-parameter group of isometries induced by X. By the
lemima, f+(X) € K(f) = PK(f) and infinitesimal rigidity of f yields that
J*(X) = Y o f holds for some Y e so(n + 1). Thus the infinitesimal
isometries X and Y are f-related [7] and it follows that fo @, = Yiof, fEM,
is valid, where (y,) c SO(n + 1) is the one-parameter subgroup induced by
Y. In particular, we obtain the existence of an isometry g € SO(n + 1) such
that
Jo g = gofholds. Since fis full, g is uniquely determined. Putting g = p(g)
we get a homomorphism p: i(M), — SO(n + 1) such that fis p-equivariant
and the proof is finished.

Corollary 1 Let M be symmetric and f:M— S" a full infinitesimally rigid
harmonic embedding with constant energy density. Then the second
Sfundamental form B(N)=Vf+) of f is orthogonal to im f, i.e. we have
BAOX, Y), f«(Z)=0forall X, Y, Ze X(M).

Proof Denote by we OZT*(M) the pull-back of the metric tensor of "
via f. By Theorem 1 there exists a monomorphism p: i(M); — SO(n + 1)
such that fis p-equivariant. Thus, for X » Y € X(M) and g € i(M),, we have

(E+0)(X,Y) = w(gs(X), g+(Y)) = (f+(g+(X)), f+(gr(Y))) = (P()=(f+(X)),
P@)*(f+(Y))) = (f+(X), f+(Y)) = w(X, Y), i.e. the symmetric 2-form o is
i(M)o-invariant. Since M is symmetric it follows that w is parallel ([10],
p.174), i.e. forany X, Y, Z €X(M)

(Vxw) (Y, Z) = X(o(Y,Z)) — w(VxY, Z) — w(Y, VxZ) =0
is valid, or equivalently

X+ (Y), fo(Z2)) = (F(VxY), f+(Z)) + (fo(Y), f+(V x2)).

On the other hand, we have

XP+(Y), f+(2)) = (Vxlf+(Y)), f+(Z)) + (f+(Y), V x(F=(2)))

and subtracting this equation from the above we obtain

0= (B(f)(X’ Y), f+(Z)) + (ﬁ(f)(x’ Z), f+(Y),

where

BNX, Y) = (Vxfe(Y)) = fo(VxY).



162 Flexible harmonic maps into spheres

Hence, using the Symmetry of B(f) [6], we get
BN, 1), f(2)) = B, X), f+(2))

—~(BN(Y, 2), fo(X))

—B(Z, V), f+(x))

BNZ, X), f=(¥))

BAX, 2), (1))

= —(BNX, V), f+(2)),

which completes the proof. O

I

As a direct consequence we obtain the following characterization
isometries of $":

Corollary2 A4 diffeomorphism [:8" = 8" is isometric ifand only if f is
infinitesimally rigid harmonic map with constant energy density.

Proof The identity ids., and hence any isometry of §”, is infinitesima
rigid as it was established in [15]. Conversely, the hypotheses of Corolla

1 being satisfied, fis totally geodesic, from which we easily deduce that f
isometric.

Example 6 Any conformal diffeomorphism f£-$2 — §2 is infinitesimal
rigid. Indeed, it js just a reformulation of a result of Smith ([11), py
113-117). Clearly, e(f) # const unless [fis isometric. (We note that V() =
since deg f = +1 [13]; in particular [ is locally rigid.)

3. STANDARD MINIMAL IMMERSIONS

Consider the eigenspace #sy of the Laplacian A = AS” of the Euclidea
m-sphere ™ corresponding to the eigenvalue As) =s(s +m — 1),seN
An element of ¥, is the restriction (to §™) of a homogeneous harmoni
polynomial onIR™ * ! of degree s and so dim i) = n(s) + 1, where

n(s):(Zy-}-m—])M_L

sli(m - 1)!

[2]. Integration over §” defines an Euclidean scalar product (s )onFHy.
Taking an orthonormal base {fi . po+nc #5(s) we have
n(s)+1

=Z] ()? = const
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[4] and hence, by a suitable normalizing factor N > 0, the standard
minimal immersion f:S™ — $") is defined (up to equivalence) by f(x) =
(Nd'(x), ..., Nf'® * Y(x)), x € $™. Then [2] f is full and homothetic such
that

.G = —— P
k(s)

holds for X e X(S™), where k(s) = mis(s + m — 1). Finally, for odd s, the
map f:S8” — $" js an embedding and, for even s, it factors through the
canonical projection 7:5" — IRP™, yielding an embedding f:IRP™— §"),

[4].

Theorem 2 If s = 2 then for the standard minimal immersion f:S™ —>
S we have

1
dim PK(f) = — (Sm* + 26m> + 19m? — 50m) — 1.
24

In particular, fis infinitesimally rigid if and only ifm=2(ie f$*— $%is
the Veronese surface).

Proof The second statement follows from the first by direct
computation using Proposition 1. To prove the first, we note that an
element of H,,, is the restriction to $™ of a polynomial p:IR™ *! — IR which
has the form

m+1

p= k% 4@, + 25;_”:’1'%’

where a,, b; € Rwith

and

@x, @;; are scalars on §™ defined by ou(x) = x3, (%) = xx;, x = (x,, ...,
Xm+1)ES k=1,...m+ 1,1 Si<jsm+1(cf. [2], p.176). The
standard minimal immersion £:5” — §"® js then defined by the more
explicit form

N mt o 1 2N
flxy, ooy, Xns1) = —— ; ( - ) P+ — 3 XXi@ij, x € §™,
1-J*! m+1 J i<
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where I = || |P, 7 = l@;l? and N > 0 is a normalizing factor given by th
condition | = 1. A vector field v along f determines a map v:5™ =¥
given by translating the vectors of v to the origin of #r2)- Thus ¥ has th
form

m+1
V= Z a @, + 2 z bij‘pij’
k=1 i<j

where q,, by are scalars on $™ with

m+1

2 a,= 0.
k=1
Moreover, by [9), v e K(/) is equivalent to Ap = 2(m + 1)v since

2e(f) = trace |If |? = Rl s 2(m + 1).
k(2)

Thus, orthogonality relations for @« and @; ([2], p. 176) imply that q,, by, k
=L.sm+lIsi<jsm+ 1, belong to 72, and so we have
m+1

ar=k2] a/r(q)k+22b,;¢,,, r= 1, ey m + 1,
= i<j

and

m+1

bpq=k§a£‘l¢k+2g;bgq%,’ I<p<gsm+i,

where af, by, af9, b%? e Rsuch that
m+1 m+]

(1) k§a2=0 and k§a£q=0, r=L..m+l1sp<gsm+1,

m+1
hold. The relation ¥ a, = 0 translates into
k=1

m+1 m+1

) Zla2=0 and Zlb,f,:O.

(In particular, PK(f) = K(p).) Finally, as in the proof of Theorem 2 in [9],
an easy computation shows that (f, 9) = 0 is satisfied if and only if the
following relations hold:

3) a,’(‘=0,k=1,...,m+1;

4) a}+a{+8b{}=0,1<i<j$m+1;

) b‘j+2aff=0,lsi<j$m+l;

(6) by + 240 =0 1<i<jsm+ 1,

(7 b;,+2a,"f+4b,5i+4b,;i=o,1Sr<i<jsm+1;
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(8) bYy+2a!+4abi+4bl/=0,1<i<r<j<sm+1;
(9) by+2a)+4b+4b=0,1<i<j<sm+1;

(10) bf;"+b{;,’+b{!:,+b;i;l,+b§l,’,+,b;'{,,=0
forallsi<j<p<g<m+1.

Our task is to compute dimK(f), i.e. the dimension of the linear space
consisting of all solutions of the linear system (1)-(10). In order to solve
the system (1)-(10) we first choose the coefficients a%, k, r = 1,...,.m+1,
satisfying the corresponding relations in (1), (2) and (3). These span a
linear space of dimension (m + 12— (m + 1) + m+ 1+ m)=m? — m —
1. The second relation of (2) yields that the linear space spanned by the
coefficients b, r=1, ... m+ 1, 1<i<jsm+ 1, has dimension
(™;* )m. By relations (5)~(6) the coefficients a7, dil<i<jsm+1,
depend on a. Hence, by the second relation of (1), each row

af, af, ..., akh,;, 1<i<jsm+1,

contains exactly three dependent elements, i.e. the dimension of the linear
space of independent coefficients a?, r=1,...,m + Ll<i<jsm+1,is
(m = 2)("™S"). Now we have to determine the linear space of coefficients
b,l<i<j<m+1,1<p<gqg<m+ 1, which are independent from
{a}, b}, a? J_k, r=1,...,m+1,1<i<j<m+ 1}. By relation (4) the
elements by, 1 < i < j < m + 1, are dependent. The linear space of
independent coefficients b§7 such that i, j, P, q are not mutually distinct, by
relations (7), (8) and (9), isspannedby b, 1sr<i<jsm+1, by, 1=<i
<r<jsm+l,and b, 1<i<j<rsm+ 1, i.e. its dimension is
3(™3$"). Finally, the only relations between the coefficients b7 for which i,
J» p» q are mutually different are in (10). Each equation in (10) contains
exactly one coefficient b7 with i < j < p < ¢ and so the dimension of the
corresponding linear space is 5(™;!). Thus we have

dim K(f) = m* —m = 1+ ("3 Ym + (m - 2)("3")
+3("N + 5("H).
and a straightforward computation completes the proof. O
Next we turn to the local rigidity of the standard minimal imersions. As
has already been established in [9], the Veronese surface f:52 — §* has

trivial variation space, in particular, it is locally rigid. In contrast to this, for
m = 3, we have the following:

Theorem 3 If m = 3 is odd, then the standard minimal immersion
f:8™ — ") is non-locally rigid.
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Proof  First we show that local rigidity of f:5™ — §7() implies that j
totally geodesic, i.e it maps geodesics of §™ onto geodesics of S linea;
[6]. Let y:IR— S™ be a geodesic with initial vector X, € T, (§™), xy = W
Because m is odd we can extend the vector X, to an infinitesimal isomet
X e so(m + 1) with "XII = const. Then, denoting by (¢,) © SO(m + Dt
one-parameter group of isometries induced by X, the integral curves ¢
@/(x), x € §™, are geodesics, in particular the vector field v — f.(X) alon;
is projectable. On the other hand, by the lemma, v € K(f) and, since

1
Ml = if, (o)l =

Xl = const,

k(s)

we get v € V(f). Local rigidity of f implies the existence of a one-paramet
group (@) < SO(n(s) + 1) of isometries such that fi=expo(tv) = y,c
holds for all t €IR. Thus, if Y denotes the infinitesimal isometry induced t
(¥1) then f.(X) = Y o f, i.e. the vector fields X and Y are f-related.
follows that fo @, = y, o fis valid for all t€MR, i.e. the geodesic t — ()
@:(xo) is mapped under f to the geodesic ¢t — exp (tvy,) since f(@,(x,))
Y(f(xo)) = exp(tv,.), t€R, and hence f is totally geodesic. Clearly, th
image of f is then a totally geodesic submanifold of §" which contradic
the fullness of f. Thus the theorem is proved. D

The only property of the domain used in the proof of Theorem 3 is th
extendability of a given vector X,, 1o an infinitesimal isometry X with [|lx
= const. Thus, by the same argument, we get the following;

Corollary 3 Let M be either an odd Euclidean sphere or a compact L
8roup with biinvariant metric. Then any full harmonic homotheti
embedding f:M — S", with dim M < n, is non-locally rigid.

In particular, the harmonic embedding f:T°> — §° of Example 2 i
non-locally rigid.

Remark  According to Calabi [3]) and Do carmo and Wallach [4] ful
isometric minimal immersions of the sphere S%s) of constant sectiona
curvature k(s) into $"* are rigid, provided that s < 3, i.e. for any two sucl
maps f°,f":Sk(;) — S") there exists an isometry @ e O(n(s)+ 1) with @ o f
= f’. On the other hand, non-local rigidity of the standard minima
immersion f:5” — $"®) .. for odd m and s < 3, and the rigidity theoren
above imply the existence of a harmonic variation v € V(f) along which the
deformed harmonic maps f, = exp o (¢v) will not be in general homothetic
Thus we have examples of homothetic minimal immersions which are rigic
among homothetic minimal immersions but non-rigid among harmonic
maps.



5]

Acknowledgements 167

ACKNOWLEDGEMENTS

We thank Professor J. Eells for valuable discussions on harmonic maps. As
for the rigidity of the Delaunay map we are indebted to Professor A.
Elbert for his useful advice.

REFERENCES

[1] » P. Baird, Harmonic maps with symmetry, harmonic morphisms and

[2]

(3]
[4]
5]
[6]
[7]
(8]
9]
[10]
[11]
[12]
[13]
[14]

[15]

deformations of metrics. Thesis, Warwick University (1981).

M. Berger, P. Gauduchon and E. Mazet, Le spectre d’une variété
Riemannienne, Lecture Notes in Mathematics no. 194, Springer
Verlag, Berlin (1974).

E. Calabi, Minimal immersions of surfaces in euclidean spheres. J.
Diff. Geom. 1 (1967), 11-125.

M. Do Carmo and N. Wallach, Minimal immersions of spheres into
spheres. Ann. Math. 93 (1971), 43-62.

J. Eells and H. Sampson, Harmonic mappings of Riemannian
manifolds. Amer. J. Math. 86 (1964), 109-160,

J. Eells and L. Lemaire, A report on harmonic maps. Bull. Lond.
Math. Soc. 10 (1978), 1-68.

S. Kobayashi, Transformation groups in differential geometry.
Ergebn. Math. 70 (1972).

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry,
Vol. 1, Interscience, New York (1963).

A. Lee and G. Té6th, On variation spaces of harmonic maps into
spheres. In preparation.

A. Lichnerowicz, Géométrie des groups de transformations, Dunod,
Paris (1958).

R. T. Smith, Harmonic mappings of spheres. Thesis, Warwick
University (1972).

G. T6th, On variations of harmonic maps into spaces of constant
curvature. Ann. Mat. Pura Appl. (IV) 128 (1981), 389-399.

G. Téth, On harmonic maps into locally symmetric Riemannian
manifolds. Symp. Math. (to appear).

G. Téth, Construction des applications harmoniques d’un tore dans
la sphére. Ann Global Anal. Geom. (to appear).

G. Téth, On rigidity of harmonic maps into spheres. J. Lond. Math.
Soc. (to appear).



