PARAMETER SPACE FOR HARMONIC MAPS OF CONSTANT ENERGY DENSITY INTO SPHERES

1. INTRODUCTION AND STATEMENT OF THE RESULTS

As a generalization of the Do Carmo-Wallach description of minimal immersions into spheres (see [4] and [9]) the object of this paper is to classify harmonic maps of constant energy density of a fixed Riemannian manifold M (of dimension > 1) into Euclidean *n*-spheres, $n \in \mathbb{N}$. A map $f: M \to S^n$ is harmonic [6] if the vector function $\overline{f} = (f^0, \ldots, f^n): M \to \mathbb{R}^{n+1}$ induced by f via the inclusion $S^n \subset \mathbb{R}^{n+1}$ statisfies the equation

$$\Delta f = 2e(f) \cdot f,$$

where Δ is the Laplacian on M and the scalar e(f) on M stands for the energy density of f. In particular, if $e(f) = \lambda/2$ is constant, then $\lambda \in \text{Spec}(M)$ (= spectrum of M) and every component f^i , i = 0, ..., n, belongs to the eigenspace V_{λ} of Δ corresponding to λ .

Given a harmonic map $f: M \to S^n$, denote by K(f) the vector space of divergence-free Jacobi fields along f [8]. Then [8] $so(n+1) \circ f \subset PK(f)$, where so(n+1) is the Lie algebra of Killing vector fields on S^n and $PK(f) \subset K(f)$ stands for the linear subspace of projectable elements, i.e. $PK(f) = \{v \in K(f) | v_x = v_{x'} \text{ whenever } f(x) = f(x'), x, x' \in M\}$. Furthermore [7], $v \in K(f)$ if and only if

$$\Delta \hat{v} = 2e(f) \cdot \hat{v},$$

where $\hat{v} = (v^0, \ldots, v^n)$: $M \to \mathbb{R}^{n+1}$ is the vector function obtained from v by translating tangent vectors of $S^n \subset \mathbb{R}^{n+1}$ to the origin via the canonical identification $\hat{}: T(\mathbb{R}^{n+1}) \to \mathbb{R}^{n+1}$. Especially, if $e(f) = \lambda/2$, $\lambda \in \text{Spec}(M)$, then $v^i \in V_{\lambda}$, $i = 0, \ldots, n$. For fixed $n \in \mathbb{N}$, the orthogonal group O(n + 1) acts, by composition, on the space of all harmonic maps $f: M \to S^n$ with energy density $e(f) = \lambda/2 \in \mathbb{R}$ and, passing to the orbit space, we are led to study the equivalence classes of harmonic maps of M into S^n , where two maps $f, f': M \to S^n$ are said to be equivalent if there exists $U \in O(n + 1)$ such that $f' = U \circ f$. For the following classification theorem to be proved in Section 2, recall that a map $f: M \to S^n$ is said to be full if $\operatorname{im}(\overline{f}) \subset \mathbb{R}^{n+1}$ is not contained in a proper linear subspace of \mathbb{R}^{n+1} .

^{*} During the preparation of this note, G. Tóth was supported by the C.N.R.

Geometriae Dedicata 17 (1984) 61–67. 0046–5755/84/0171–0061\$01.05. © 1984 by D. Reidel Publishing Company.

THEOREM 1. Let G be a compact Lie group, $K \subset G$ a closed subgroup and assume that M = G/K is a (compact) oriented (isotropy) irreducible homogeneous space with invariant Riemannian metric g. Given $(0 \neq)\lambda \in \operatorname{Spec}(G/K)$, the equivalence classes of full harmonic maps $f: G/K \to S^n$ with $e(f) = \lambda/2$ can be (smoothly) parametrized by a compact convex body L lying in a finite dimensional vector space E. The interior points of L correspond to maps with maximal $n(=n(\lambda) = \dim V_{\lambda} - 1)$. Finally, for every full harmonic map $f:G/K \to S^{n(\lambda)}$ with $e(f) = \lambda/2$, we have PK(f) = K(f) and $K(f)/\operatorname{so}(n(\lambda) + 1) \circ$ $f \cong E$.

REMARK 1. Recall [8] that a harmonic map $f: M \to S^n$ is said to be infinitesimally rigid if $so(n + 1) \circ f = PK(f)$. Keeping the hypotheses of Theorem 1 we obtain that a full harmonic map $f: G/K \to S^{n(\lambda)}$ with $e(f) = \lambda/2$ is infinitesimally rigid if and only if $L = E = \{0\}$, or equivalently, if for every harmonic map $f': G/K \to S^{n(\lambda)}$ with $e(f') = \lambda/2$ there exists $U \in O(n(\lambda) + 1)$ such that $f' = U \circ f$.

REMARK 2. From the proof of Theorem 1 it follows that the space L^0 parametrizing the (equivalence classes of) full minimal isometric immersions $f: G/K \to S^n$ with induced Riemannian metric $(\lambda/m)g$ is the intersection of L with a linear subspace of E. Combining this with Remark 1.1 we obtain that if a full minimal isometric immersion $f: G/K \to S^{n(\lambda)}$ with induced metric $(\lambda/m)g$ is infinitesimally rigid (as a harmonic map with energy density $\lambda/2$) then f is (linearly) rigid in the sense of [9].

Using the Do Carmo-Wallach theory, in Section 3 we determine dim $L = \dim E$ for a spherical domain $G/K = SO(m + 1)/SO(m) = S^m$.

THEOREM 2. Let $G/K = SO(m + 1)/SO(m) = S^m$ and $\lambda_k = k(k + m - 1) \in Spec(S^m)$, $k \in \mathbb{N}$. If m = 2 or k = 1, we have dim E = 0. Furthermore, denoting by V_m^{σ} the irreducible complex SO(m + 1)-module (= representation space for SO(m + 1)) with highest weight $\sigma = (\sigma_1, \ldots, \sigma_l) \in (\frac{1}{2}\mathbb{Z})^l$, l = [(m + 1)/2], if k > 1, we have, for m = 3,

(*)
$$\dim E = \sum_{\substack{(a,b)\in\Delta\\a,b \text{ even}}} \dim_{\mathbb{C}} \{ V_3^{(a,b)} \oplus V_3^{(a,-b)} \}$$

and, for m > 3,

(**)
$$\dim E = \sum_{\substack{(a,b)\in\Delta\\a,b \text{ even}}} \dim_{\mathbb{C}} V_m^{(a,b,0,\ldots,0)},$$

where $\Delta \subset \mathbb{R}^2$ is the closed (convex) triangle with vertices (2,2), (k,k) and (2k-2, 2).

REMARK 3. As shown in Section 3, $\dim_{\mathbb{C}} V_m^{(a,b,0,\ldots,0)}$, occurring in (*)-(**), can be determined by the Weyl dimension formula [2, p. 266]).

REMARK 4. In [4] Do Carmo and Wallach gave a lower estimate for dim L^0 which is, for harmonic maps, replaced here by the exact determination of dim $L(\ge \dim L^0)$. In particular, by [9] and Theorem 2, for m > 2 and k = 2, 3, we have dim $L > \dim L^0 = 0$ and, for m > 2 and k > 3, dim $L \ge \dim L^0 \ge 18$.

REMARK 5. For m = 2, Theorem 2 and Remark 1 yield Calabi's rigidity theorem [3]. For generalities on harmonic maps, the Report [5] serves as a general reference and, for the Do Carmo-Wallach theory of minimal immersions, we use the results of [4] and [9].

2. PROOF OF THE CLASSIFICATION THEOREM

Let G/K be a compact oriented irreducible homogeneous space with invariant Riemannian metric g and origin $O = \{K\} \in G/K$. For fixed $(O \neq) \lambda \in \operatorname{Spec}(G/K)$, define a scalar product \langle , \rangle on the eigenspace $V_{\lambda} \subset C^{\infty}(G/K)$ corresponding to λ by

$$\langle \mu, \mu' \rangle = \frac{n(\lambda) + 1}{\int_{G/K} \operatorname{vol}(G/K, g)} \int_{G/K} \mu \cdot \mu' \operatorname{vol}(G/K, g),$$

where dim $V_{\lambda} = n(\lambda) + 1$ and vol(G/K, g) stands for the volume form on G/K.

The canonical action of G on G/K (by isometries with respect to g) gives rise to a (linear) representation of G on $C^{\infty}(G/K)$ by setting $a \cdot \mu = \mu \circ a^{-1}$, $a \in G$, $\mu \in C^{\infty}(G/K)$. This leaves the eigenspace $V_{\lambda} \in C^{\infty}(G/K)$ invariant and preserves the scalar product \langle , \rangle on V_{λ} , i.e. we obtain an orthogonal representation $\rho: G \to SO(V_{\lambda})$.

For fixed orthonormal base $\{f_{\lambda}^{i}\}_{i=0}^{n(\lambda)} \subset V_{\lambda}$ which, at the same time, identifies V_{λ} with $\mathbb{R}^{n(\lambda)+1}$, define a map

$$\tilde{f}_{\lambda}: G/K \to V_{\lambda}(=\mathbb{R}^{n(\lambda)+1})$$

by

$$\overline{f}_{\lambda}(x) = \sum_{i=0}^{n(\lambda)} f^{i}_{\lambda}(x) f^{i}_{\lambda} = (f^{0}_{\lambda}(x), \dots, f^{n(\lambda)}_{\lambda}(x)), \qquad x \in G/K$$

Then [4] $\operatorname{im}(\overline{f}_{\lambda}) \subset S^{n(\lambda)}$ and the induced map $f_{\lambda}: G/K \to S^{n(\lambda)}$ is a minimal immersion with induced Riemannian metric $(\lambda/m)g$ or, keeping the original metric g on G/K, f_{λ} is a full harmonic (homothetic) immersion with energy density $e(f_{\lambda}) = \lambda/2$. The map f_{λ} is said to be the standard minimal immersion

associated to the eigenvalue $\lambda \in \text{Spec}(G/K)$. (Clearly, different choices of the orthonormal base in V_{λ} give rise to equivalent standard minimal immersions.) The identification $V_{\lambda} = \mathbb{R}^{n(\lambda)+1}$ above translates the orthogonal representation ρ to a matrix representation $\rho: G \to \text{SO}(n(\lambda) + 1)$ such that $f_{\lambda}: G/K \to S^{n(\lambda)}$ is equivariant with respect to ρ , i.e. we have $f_{\lambda} \circ a = \rho(a) \circ f_{\lambda}$, $a \in G$. Clearly, $v^0 = \overline{f_{\lambda}}(0) \in V_{\lambda}$ is left fixed by $\rho(K)$.

Let W^0 denote the linear subspace of the symmetric square $S^2(V_{\lambda}) = S^2(\mathbb{R}^{n(\lambda)+1})$ given by

$$W^{0} = \operatorname{span}_{\mathsf{R}} \{ \rho(a)((v^{0})^{2}) \in S^{2}(V_{\lambda}) | a \in G \}$$

= $\operatorname{span}_{\mathsf{R}} \{ (\overline{f}_{\lambda}(x))^{2} \in S^{2}(\mathbb{R}^{n(\lambda)+1}) | x \in G/K \}$

and set

$$E = (W^0)^{\perp} \subset S^2(\mathbb{R}^{n(\lambda)+1}),$$

where the orthogonal complement is taken with respect to the scalar product $\langle A, B \rangle = \text{trace } B^{t_{\circ}}A$, $A, B \in S^{2}(\mathbb{R}^{n(\lambda)+1})$ (t = transpose). Finally, let $L \subset E$ be the convex body defined by

$$L = \{C \in E | C + I_{n(\lambda)+1} \text{ is positive semidefinite}\},\$$

where $I_{n(\lambda)+1}$ = identity of $\mathbb{R}^{n(\lambda)+1}$.

Given a full harmonic map $f: G/K \to S^n$ with $e(f) = \lambda/2$, the system $\{f^i\}_{i=0}^n$ (of components of \overline{f}) is a linearly independent set in V_{λ} ; in particular, $n \leq n(\lambda)$. By polar decomposition of matrices, there exists a positive semidefinite endomorphism $B \in S^2(\mathbb{R}^{n(\lambda)+1})$ such that $\operatorname{im}(B \cdot \overline{f}_{\lambda}) \subset S^{n(\lambda)}$ and $i \circ f$ is equivalent to $B \circ f_{\lambda}$, where $i: S^n \to S^{n(\lambda)}$ denotes the canonical inclusion map. Moreover, B is uniquely determined by the equivalence class of f. Associate then to f the matrix $C = B^2 - I_{n(\lambda)+1}$. As $B \circ f_{\lambda}$ maps into $S^{n(\lambda)}$, for $x \in G/K$, we have

$$\langle C, (\overline{f}_{\lambda}(x))^2 \rangle = \langle C \cdot \overline{f}_{\lambda}(x), \overline{f}_{\lambda}(x) \rangle = \langle B \cdot \overline{f}_{\lambda}(x), B \cdot \overline{f}_{\lambda}(x) \rangle - 1 = 0$$

and hence $C \in L$. Now, by the same argument as in the proof of the Classification Theorem in [9], we obtain that the correspondence $f \to C$ gives rise to a parametrization of the space of equivalence classes of full harmonic maps $f:G/K \to S^n$ with $e(f) = \lambda/2$ by the convex body $L \subset E$. Moreover, L is compact.

To prove the last statement of Theorem 1, let $f: G/K \to S^{n(\lambda)}$ be a full harmonic map with $e(f) = \lambda/2$. By Section 1, $v \in K(f)$ if and only if $\{v^i\}_{i=0}^{n(\lambda)} \subset V_{\lambda}$ with $\langle \overline{f}, \hat{v} \rangle = 0$. As f is full there exists a unique $(n(\lambda) + 1) \times (n(\lambda) + 1)$ matrix X such that $\hat{v} = X \cdot \overline{f}$, especially, K(f) = PK(f). Writing X = A + B, $A \in so(n(\lambda) + 1)$ and $B \in S^2(\mathbb{R}^{n(\lambda) + 1})$, the relation

$$\langle \vec{f}, \hat{v} \rangle = \langle \vec{f}, A \cdot \vec{f} \rangle + \langle \vec{f}, B \cdot \vec{f} \rangle = 0$$

splits into $\langle \vec{f}, A \cdot \vec{f} \rangle = \langle \vec{f}, B \cdot \vec{f} \rangle = 0$. By fullness of f, there exists a nonsingular $(n(\lambda) + 1) \times (n(\lambda) + 1)$ matrix Y with $\vec{f} = Y \cdot \vec{f}_{\lambda}$. Then, $Y^t \cdot B \cdot Y \in S^2(\mathbb{R}^{n(\lambda)+1})$ and, for $x \in G/K$, we have

$$O = \langle \vec{f}(x), B \cdot \vec{f}(x) \rangle = \langle Y \cdot \vec{f}_{\lambda}(x), B \cdot Y \cdot \vec{f}_{\lambda}(x) \rangle$$
$$= \langle \vec{f}_{\lambda}(x), (Y^{t} \cdot B \cdot Y) \vec{f}_{\lambda}(x) \rangle$$
$$= \langle (Y^{t} \cdot B \cdot Y), (\vec{f}_{\lambda}(x))^{2} \rangle,$$

i.e. $Y^t \cdot B \cdot Y \in E$. Now, the correspondence which associates to $v \in K(f)$ the pair $(A \circ f, Y^t \cdot B \cdot Y) \in (\operatorname{so}(n(\lambda) + 1) \circ f) \oplus E$ is a linear isomorphism. Hence $K(f)/\operatorname{so}(n(\lambda) + 1) \circ f \cong E$, which completes the proof of Theorem 1.

REMARK 6. Setting

$$W = \operatorname{span}_{\mathbb{R}} \{ S^2((\overline{f}_{\lambda})_{\star}(T_x(G/K))) | x \in G/K \} \subset S^2(\mathbb{R}^{n(\lambda)+1})$$

and using the notations of Section 1, by [4], we have $W^0 \subset W$ and $L^0 = L \cap W^{\perp}$.

3. Computation of $\dim L$ for spherical domains

Let G = SO(m + 1), K = SO(m) and endow $G/K = S^m$ with the Euclidean metric. Then [1] $Spec(S^m) = \{\lambda_k = k(k + m - 1) | k \in \mathbb{Z}_+\}$ and, for each $k \in \mathbb{Z}_+$, the eigenspace V_{λ_k} corresponding to λ_k is the vector space \mathscr{H}_m^k of spherical harmonics of order k on S^m with

dim
$$\mathscr{H}_{m}^{k} = n(\lambda_{k}) + 1 = (2k + m - 1)\frac{(k + m - 2)!}{k!(m - 1)!}$$

Furthermore, as an orthogonal SO(m + 1)-module, \mathscr{H}_m^k is irreducible [1] and, for fixed orthonormal base $\{f_{\lambda k}^i\}_{i=0}^{n(\lambda k)} \subset \mathscr{H}_m^k$, the construction of the standard minimal immersion $f_{\lambda k}: S^m \to S^{n(\lambda k)}$, in Section 2, shows that the SO(m + 1)-module structure ρ on \mathscr{H}_m^k is also class 1 for the pair (SO(m + 1), SO(m)) – i.e. there exists a unit vector $v^0 \in \mathscr{H}_m^k$ left fixed by $\rho(SO(m))$. (Here and in what follows we use the notions and results of [9] without making explicit references.) Conversely, every class 1 representation of (SO(m + 1), SO(m)) is equivalent to some \mathscr{H}_m^k (considered as an irreducible orthogonal SO(m + 1)-module.) Denoting also by ρ the induced representation on the symmetric square $S^2(\mathscr{H}_m^k)$, the SO(m + 1)-submodule

$$W^{0} = \operatorname{span}_{\mathbb{R}} \{ \rho(a)((v^{0})^{2}) \in S^{2}(\mathscr{H}_{m}^{k}) | a \in \operatorname{SO}(m+1) \}$$

of $S^2(\mathscr{H}_m^k)$ is the sum of all submodules which are class 1 for (SO(m + 1), SO(m)).

For m = 2, by elementary representation theory, each submodule of $S^2(\mathscr{H}_2^k)$ is class 1 for (SO(3), SO(2)) (since dim $\mathscr{H}_2^k = 2k + 1$ is odd). Thus, $W^0 = S^2(\mathscr{H}_2^k)$ and hence $(W^0)^{\perp} = E = \{0\}$. For k = 1, a standard minimal immersion $f_{\lambda_1}: S^m \to S^m$ is nothing but an isometry and hence infinitesimally rigid [8], i.e. by Theorem 1, $E = \{0\}$.

Setting m > 2 and k > 1, we now prove (*)-(**). As irreducibility of submodules in $S^2(\mathscr{H}_m^k)$ do not depend on field extensions, the complexification $W^0 \otimes_{\mathbb{R}} \mathbb{C}$ is the sum of all irreducible complex SO(m + 1)-modules in $S^2(\mathscr{H}_m^k \otimes_{\mathbb{R}} \mathbb{C})$ which are class 1 for (SO(m + 1), SO(m)). By a result of Do Carmo-Wallach in [4] we have the following decompositions

$$(*') \qquad S^{2}(\mathscr{H}_{3}^{k} \bigotimes_{\mathbb{R}} \mathbb{C}) = \bigoplus_{j=0}^{[k/2]} \{ V_{3}^{(2k-2j,2j)} \oplus V_{3}^{(2k-2j,-2j)} \} \\ \oplus S^{2}(\mathscr{H}_{3}^{k-1} \bigotimes_{\mathbb{R}} \mathbb{C})$$

and

$$(**') \qquad S^{2}(\mathscr{H}_{m}^{k}\otimes\mathbb{C}) = \bigoplus_{j=0}^{[k/2]} V_{m}^{(2k-2j,2j,0,\ldots,0)} \oplus S^{2}(\mathscr{H}_{m}^{k-1}\otimes\mathbb{C}), \quad m>3,$$

where V_m^{σ} stands for the irreducible complex SO(m + 1)-module with highest weight $\sigma = (\sigma_1, \ldots, \sigma_l) \in (\frac{1}{2}\mathbb{Z})^l$, l = [(m + 1)/2]. Since $V_m^{(i,0,\ldots,0)} = \mathscr{H}_m^i \otimes_{\mathbb{R}} \mathbb{C}$, $i \in \mathbb{Z}_+$, (*') and (**) imply (*) and (**), resp.

REMARK 7. Once $\dim_{\mathbb{C}} V_m^{(a,b,0,\ldots,0)}$ is known for each $(a,b) \in \Delta$, a, b even, we can compute $\dim L = \dim E$ via (*)-(**). In what follows, using the Weyl dimension formula [2] we determine $\dim_{\mathbb{C}} V_m^{(a,b,0,\ldots,0)}$.

(i) m = 2l even, l > 2. We have

$$\begin{split} \dim_{\mathbb{C}} V_{\mathfrak{m}}^{(a,b,0,\dots,0)} \\ &= \frac{(a-b+1)(a+b+2l-2)}{2l-2} \times \prod_{r=3}^{l} \frac{(a+r-1)(a+2l-r)}{(r-1)(2l-r)} \\ &\times \prod_{r=3}^{l} \frac{(b+r-2)(b+2l-r-1)}{(r-2)(2l-r-1)} \times \frac{(2a+2l-1)(2b+2l-3)}{(2l-1)(2l-3)} \\ &= \frac{(a-b+1)(a+b+2l-2)}{2l-2} \times \frac{1}{a+1} \binom{a+2l-3}{a} \binom{b+2l-4}{b} \\ &\times \frac{(2a+2l-1)(2b+2l-3)}{(2l-1)(2l-3)} \\ &= \frac{(a-b+1)(a+b+m-2)(2a+m-1)(2b+m-3)}{(a+1)(m-1)(m-2)(m-3)} \end{split}$$

$$\times \binom{a+m-3}{a}\binom{b+m-4}{b}.$$

- (ii) m = 2l 1 odd, l > 2. By similar computations we obtain the same formula for $\dim_{\mathbb{C}} V_m^{(a,b,0,\ldots,0)}$ as above.
- (iii) m = 3, 4. Again by the Weyl dimension formula

$$\dim_{\mathbb{C}} V_3^{(a,b)} = \dim_{\mathbb{C}} V_3^{(a,-b)} = (a-b+1)(a+b+1)$$

and

$$\dim_{\mathbb{C}} V_4^{(a,b)} = \frac{1}{6}(a-b+1)(a+b+2)(2a+3)(2b+1).$$

REFERENCES

- 1. Berger, M., Gauduchon, P. and Mazet, E.: 'Le spectre d'une variété Riemannienne', Springer Notes 194, 1971.
- 2. Boerner, H.: Representations of Groups, North Holland, Amsterdam, 1963.
- 3. Calabi, E.: 'Minimal Immersions of Surfaces in Euclidean Spheres', J. Diff. Geom. 1 (1967), 111-125.
- 4. Do Carmo, M. P. and Wallach, N. R.: 'Minimal Immersions of Spheres into Spheres', Ann. Math. 93 (1971), 43-62.
- 5. Eells, J. and Lemaire, L.: 'A Report on Harmonic Maps', Bull. London Math. Soc. 10(1978), 1-68.
- 6. Eells, J. and Sampson, J. H.: 'Harmonic Mappings of Riemannian Manifolds', Amer. J. Math. 86 (1964), 109-160.
- 7. Lee, A. and Tóth, G.: 'On Variation Spaces of Harmonic Maps into Spheres', Acta Sci. Math. 46 (1983), 127-141.
- 8. Tóth, G.: 'On Rigidity of Harmonic Mappings into Spheres', J. London Math. Soc. (2), 26 (1982), 475-486.
- 9. Wallach, N. R.: 'Minimal Immersions of Symmetric Spaces into Spheres', in Symmetric Spaces, Dekker, New York, 1972, pp. 1-40.

Authors' addresses:

G. Tóth,	G. D'Ambra,
The Ohio State University,	Istituto Matematico,
Department of Mathematics,	Università di Cagliari,
231 West 18th Avenue,	Via Ospedale 72,
Columbus, OH 43210	09100 Cagliari,
U.S.A.	Italy

(Received March 21, 1984)