G. TOTH AND G. D'AMBRA

PARAMETER SPACE FOR HARMONIC MAPS OF
CONSTANT ENERGY DENSITY INTO SPHERES

1. INTRODUCTION AND STATEMENT OF THE RESULTS

As a generalization of the Do Carmo-Wallach description of minimal
immersions into spheres (see [4] and [9]) the object of this paper is to classify
harmonic maps of constant energy density of a fixed Riemannian manifold M
(of dimension > 1) into Euclidean n-spheres, neN. A map f:M—>S§" is
harmonic [6] if the vector function f=(f°,..., f"): M - R**! induced by
[ via the inclusion §* < R"*?! statisfies the equation

Af =2e(f) f,

where A is the Laplacian on M and the scalar e(f) on M stands for the
energy density of f. In particular, if e(f)= 4/2 is constant, then AeSpec(M)
(= spectrum of M) and every component f*, i=0,...,n, belongs to the
eigenspace V, of A corresponding to A.

Given a harmonic map f: M —§", denote by K(f) the vector space of
divergence-free Jacobi fields along f [8]. Then [8] so(n+ 1)°f = PK(f),
where so(n+1) is the Lie algebra of Killing vector fields on §" and
PK(f) < K(f) stands for the linear subspace of projectable elements, i.e.
PK(f)={veK(f)|v, = v, whenever f(x) = f(x'), x, x’eM}. Furthermore [7],
veK(f) if and only if

Ab = 2¢(f)-4,

where 0= (°...,v"):M—>R"*! is the vector function obtained from
v by translating tangent vectors of $" < R"*! to the origin via the canonical
identification ": T(R"*')—>R"*!. Especially, if e(f)=4/2, AeSpec(M),
then v'eV,, i=0,...,n. For fixed neN, the orthogonal group O(n + 1) acts,
by composition, on the space of all harmonic maps f: M — 8" with energy
density e(f) = A/2eR and, passing to the orbit space, we are led to study
the equivalence classes of harmonic maps of M into S", where two maps
f,f'*M — 8" are said to be equivalent if there exists UeO(n + 1) such that
f'=Ue°f. For the following classification theorem to be proved in
Section 2, recall that a map f:M —S" is said to be full if im(f) = R**!
is not contained in a proper linear subspace of R**?.
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THEOREM 1. Let G be a compact Lie group, K = G a closed subgroup
and assume that M = G/K is a (compact) oriented (isotropy) irreducible homo-
geneous space with invariant Riemannian metric g. Given (0 #)A1eSpec(G/K),
the equivalence classes of full harmonic maps f: G/K — 8" with e(f) = 4/2 can
be (smoothly) parametrized by a compact convex body L lying in a finite
dimensional vector space E. The interior points of L correspond to maps with
maximal n(=n()=dimV,; —1). Finally, for every full harmonic map
f:G/K - S"? with e(f) = A/2, we have PK(f)= K(f) and K(f)/so(n(4) + 1)°
f=E.

REMARK 1. Recall {8] that a harmonic map f: M —S" is said to be
infinitesimally rigid if so(n+ 1)°f = PK(f). Keeping the hypotheses of
Theorem 1 we obtain that a full harmonic map f: G/K — $"® with e(f) = 4/2
is infinitesimally rigid if and only if L = E = {0}, or equivalently, if for every
harmonic map f”: G/K — $"® with e(f’) = /2 there exists UeO(n(4) + 1) such
that f'=Uc°f.

REMARK 2. From the proof of Theorem 1 it follows that the space
L° parametrizing the (equivalence classes of) full minimal isometric immer-
sions f: G/K - $" with induced Riemannian metric (4/m)g is the intersection
of L with a linear subspace of E. Combining this with Remark 1.1 we obtain
that if a full minimal isometric immersion f: G/K — $"® with induced metric
(4/m)g is infinitesimally rigid (as a harmonic map with energy density 4/2)
then f is (linearly) rigid in the sense of [9].

Using the Do Carmo—Wallach theory, in Section 3 we determine dim
L =dim E for a spherical domain G/K = SO(m + 1)/SO(m)= 8™

THEOREM 2. Let G/K=S80(m+ 1)/SO(m)=8" and A, =kk+m—1)e
Spec(S™), keN. If m=2 or k=1, we have dim E =0. Furthermore, denoting
by V2 the irreducible complex SO(m+ l)-module (= representation space
for SO(m + 1)) with highest weight 6 =(c,...,6)eGZ), I1=[(m+1)/2), if
k> 1, we have, for m =3,

(%) dmE= ) dim {V§{Pev§ 2}

(a,b)eA

a,beven

and, for m >3,

(%%) dmE= Y dimg V@00,
(a,b)eA
a,beven

where A c R? is the closed (convex) triangle with vertices (2,2), (k,k) and
2k—2,2).
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REMARK 3. As shown in Section 3, dim,V%»%%  occurring
in (*)—(*%), can be determined by the Weyl dimension formula [2, p. 266]).

REMARK 4. In[4] Do Carmo and Wallach gave a lower estimate for dim L°
which is, for harmonic maps, replaced here by the exact determination of dim
L(>dim L°). In particular, by [9] and Theorem 2, for m> 2 and k = 2,3, we
have dimL > dim L° =0 and, for m>2 and k>3, dimL > dim L° > 18.

REMARK 5. For m=2, Theorem 2 and Remark 1 yield Calabi’s rigidity
theorem [3]. For generalities on harmonic maps, the Report [5] serves as a
general reference and, for the Do Carmo—Wallach theory of minimal
immersions, we use the results of [4] and [9].

2. PROOF OF THE CLASSIFICATION THEOREM

Let G/K be a compact oriented irreducible homogeneous space with
invariant Riemannian metric g and origin O ={K}eG/K. For fixed
(0 #)AeSpec(G/K), define a scalar product { , > on the eigenspace V, <
C*(G/K) corresponding to A by

n(d)+1
_‘.G/K vol(G/K, g) G/K

where dim ¥V, =n(1) + 1 and vol(G/K,g) stands for the volume form on
G/K.

The canonical action of G on G/K (by isometries with respect to g) gives
rise to a (linear) representation of G on C*(G/K) by setting a-u= pca™!,
aeG, ueC*(G/K). This leaves the eigenspace V,eC®(G/K) invariant and
preserves the scalar product ¢ , > on V,, ie. we obtain an orthogonal
representation p: G —SO(V)).

For fixed orthonormal base {f%};%) <V, which, at the same time,
identifies V, with R"»*1  define a map

[i:G/K > V(=R"*Y)

(') = p i vol(G/K, g),

by

n) .
filx) = .;of ¥ i=(130),.... fi%),  xeG/K.

Then [4] im(f,) = S*» and the induced map f;:G/K - S™® is a minimal
immersion with induced Riemannian metric (A/m)g or, keeping the original
metric g on G/K, f, is a full harmonic (homothetic) immersion with energy
density e(f,) = A/2. The map f, is said to be the standard minimal immersion



64 G. TOTH AND G. D’AMBRA

associated to the eigenvalue AeSpec(G/K). (Clearly, different choices of the
orthonormal base in V, give rise to equivalent standard minimal immersions.)
The identification V, = R"#*1 above translates the orthogonal representa-
tion p to a matrix representation p: G —SO(n(4) + 1) such that f,: G/K - §"®
is equivariant with respect to p, i.e. we have f,°a = p(a)°f,, aeG. Clearly,
v° = F,(0)eV, is left fixed by p(K).

Let W° denote the linear subspace of the symmetric square S%(V,) =
SR +1) given by

WO = spang{p(@)((:*))eSX(V)| aeG)
= spang{(F3(x))2eSA(R"*1)| xeG/K)
and set
E=(W)" c SYR*Y)

where the orthogonal complement is taken with respect to the scalar
product {A,B) =trace B'>A, A, BeS*[R"»*1) (¢t = transpose). Finally, let
L < E be the convex body defined by

L={CeE|C + I,;)+, is positive semidefinite},

where I,,;,+, =identity of R"»*1,

Given a full harmonic map f: G/K — S" with e(f) = 4/2, the system { f}7_,
(of components of f) is a linearly independent set in V,; in particular, n < n(4).
By polar decomposition of matrices, there exists a positive semidefinite
endomorphism BeS*R"»*!) such that im(B-f)<S"® and i°f is
equivalent to Bef,, where i: " — S™* denotes the canonical inclusion map.
Moreover, B is uniquely determined by the equivalence class of f. Associate
then to f the matrix C=B?—1I, ;.. As Bef, maps into $"¥, for xeG/K,
we have

CC(Fi))? > = C-Fix), Fi(x)> = (B f3{x), B-f(x)> —1=0

and hence CeL. Now, by the same argument as in the proof of the
Classification Theorem in [9], we obtain that the correspondence f — C gives
rise to a parametrization of the space of equivalence classes of full harmonic
maps f:G/K — S" with e(f) = A/2 by the convex body L = E. Moreover, L is
compact.

To prove the last statement of Theorem 1, let f:G/K —S™¥ be a full
harmonic map with e(f) = 4/2. By Section 1, ve K(f) if and only if {v'}!}} =
V, with {f,6>=0. As f is full there exists a unique (n(4)+ 1) x (n(4) + 1)
matrix X such that 8 = X-f, especially, K(f)= PK(f). Writing X = 4 + B,
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Aeso(n(A) + 1) and BeS*(R™»™*1), the relation

LY =LLAT>+L{[B]>=0

splits into (f,A-f>=<f,B-f»=0. By fullness of f, there exists a non-
singular (n(4) + 1) x (n(4) + 1) matrix Y with f=Y-f,. Then, Y*B-Ye
SAR"P*1) and, for xeG/K, we have

0 ={f(x),B-f(x)> =Y fx), B-Y-Jix)>
= {filx),(Y-B-Y) fi(x)>
=<{(Y"B"Y),(fix))*),

ie. Y"-B-YeE. Now, the correspondence which associates to veK(f) the
pair (A°f,Y""B-Y)e(so(n(A) + 1)°f)@E is a linear isomorphism. Hence
K(f)/so(n(4) + 1)° f > E, which completes the proof of Theorem 1.

REMARK 6. Setting
W = spang{SH(J)4(TUG/K))) |x€G/K} = SHRM* 1)

and using the notations of Section 1, by [4], wehave W° « Wand L° = L~ W+

3. CoMPUTATION OF dim L FOR SPHERICAL DOMAINS

Let G=SO(m+ 1), K=S0(m) and endow G/K =S$™ with the Euclidean
metric. Then [1] Spec(S™) = {4, = k(k + m — 1)|keZ .} and, for each keZ,,
the eigenspace V;, corresponding to 4, is the vector space #% of spherical
harmonics of order k on $™ with

k+m-—2)!

. - _ _
dim s, =n(A)+1=02k+m-—1) Km =11

Furthermore, as an orthogonal SO(m + 1)-module, #% is irreducible [1]
and, for fixed orthonormal base {f} }i% — s#%, the construction of
the standard minimal immersion f;.: ™ — "4 in Section 2, shows that the
SO(m + 1)-module structure p on #7% is also class 1 for the pair (SO(m + 1),
SO(m)) - i.e. there exists a unit vector v°e#*, left fixed by p(SO(my)). (Here
and in what follows we use the notions and results of [9] without making
explicit references.) Conversely, every class 1 representation of (SO(m + 1),
SO(m)) is equivalent to some #%, (considered as an irreducible orthogonal
SO(m + 1)}module.) Denoting also by p the induced representation on the
symmetric square S*(2#%), the SO(m + 1)-submodule

W = span, {p(a)((v°)*)eS*(H#%)|acSO(m + 1)}
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of S%(s#* ) is the sum of all submodules which are class 1 for (SO(m + 1), SO(m)).

For m=2, by elementary representation theory, each submodule of
S%(o#*) is class 1 for (SO(3),SO(2)) (since dim s#% =2k + 1 is odd). Thus,
W° = S%(s#%) and hence (W' =E={0}. For k=1, a standard minimal
immersion f;,:S™ — S™ is nothing but an isometry and hence infinitesimally
rigid [8], i.e. by Theorem 1, E = {0}.

Setting m>2 and k> 1, we now prove (¥)—(**). As irreducibility of
submodules in S%(s#%) do not depend on field extensions, the complexifica-
tion W°®,C is the sum of all irreducible complex SO(m + 1)-modules in
S%(#* ®,C) which are class 1 for (SO(m + 1), SO(m)). By a result of Do
Carmo—Wallach in [4] we have the following decompositions

(*r) Sz(%,g ® C) _ [a_S]{ngk—Zj,Zj)@ V(32k—2j,—2j)}
R J=0
®SHH5'®C)
R

and

[k/2] .
(%) SAHE@C)= VOO QAL QC), m>3,
R i=0 R

where Vg, stands for the irreducible complex SO(m + 1)}module with
highest weight ¢ =(0,,...,0)e(2Z), I=[(m+1)/2]. Since V&0 =
H:®,C, i€Z,, (¥) and (++) imply (*) and (*#*), resp.

REMARK 7. Once dim; V@99 js known for each (a,b)eA, a, b even, we
can compute dim L=dim E via (*)—(**). In what follows, using the Weyl
dimension formula [2] we determine dim, V@09,

(i) m=2l even, I > 2. We have

dimc Vs:.b,O,...,O)
_(a—=b+1)(a+b+2-2)

« L@+r—1)a+2l—r)

21-2 =3 (r—1D@-r
N IL[(b+r——2)(b+21—-r—1) x(2a+2l—1)(2b+2l—-3)
3 F=2QRl-r-1) Ql-1Q2i-3)
_(a—b+1)(a+b+2l—2)>< 1 [fa+2l-3\/b+2]—4
- 21-2 a+1 a b

2a+21-1)2b+21-3)
QI-1)Q21-3)
_(@a—=b+D@+b+m—2)2a+m—1)2b+m—3)
B (@+ D)m—1)(m—2)(m—3)
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)Y

(i) m=2l—1 odd, > 2. By similar computations we obtain the same
formula for dim, V&"%~% as above.
(iii) m = 3,4. Again by the Weyl dimension formula

dim, V&Y = dim_ V&P =(@—b+1)@a+b+1)

and
dim VP =Ya—b+ 1)a+b+2)2a+3)(2b+1).
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