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P A R A M E T E R  S P A C E  F O R  H A R M O N I C  M A P S  O F  

C O N S T A N T  E N E R G Y  D E N S I T Y  I N T O  S P H E R E S  

1. I N T R O D U C T I O N  AND S T AT E M E NT OF THE RESULTS 

As a generalization of the Do Carmo-Wallach description of minimal 
immersions into spheres (see 1,4] and I-9]) the object of this paper is to classify 
harmonic maps of constant energy density of a fixed Riemannian manifold M 
(of dimension > 1) into Euclidean n-spheres, n~N. A map f : M ~ S "  is 
harmonic [6] if the vector function f =  ( fo , . . . ,  f,):  M--. •"+ 1 induced by 
f via the inclusion S " c  R "+ 1 statisfies the equation 

A f  = 2e(/)-f,  

where A is the Laplacian on M and the scalar e(f) on M stands for the 
energy density o f f .  In particular, if e(f)= 2/2 is constant, then 2eSpec(M) 
(=  spectrum of M) and every component fl, i= O,...,n, belongs to the 
eigenspace V~ of A corresponding to 2. 

Given a harmonic map f :  M ~ S", denote by K(f) the vector space of 
divergence-free Jacobi fields along f I-8]. Then I-8] so(n + 1)of c PK(f), 
where so(n + 1) is the Lie algebra of Killing vector fields on S" and 
PK(f) c K(f) stands for the linear subspace of projectable elements, i.e. 
PK(f) = {veK(f)l vx = vx, whenever f(x) = f(x'), x, x'eM}. Furthermore [7], 
w K ( f )  if and only if 

A/) = 2e(f).~, 

where O=(v ° . . . .  ,v"):M--,R "÷1 is the vector function obtained from 
v by translating tangent vectors of S" c R" ÷ 1 to the origin via the canonical 
identification ~ : T ( R " + I ) ~  "+l. Especially, if e(f)=2/2, 2ESpec(M), 
then vi~ V~, i =  0 . . . . .  n. For fixed neN,  the orthogonal group O(n + 1) acts, 
by composition, on the space of all harmonic maps f :  M-+ S" with energy 
density e ( f ) =  2 /2sR and, passing to the orbit space, we are led to study 
the equivalence classes of harmonic maps of M into S", where two maps 
f , f ' : M ~ S "  are said to be equivalent if there exists U~O(n+ 1) such that 
f ' =  Uof. For the following classification theorem to be proved in 
Section 2, recall that a map f : M ~ S "  is said to be full if im(J-')= ~ "+1 
is not contained in a proper linear subspace of R" ÷ 1. 
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T H E O R E M  1. Let G be a compact Lie group, K ~ G a closed suboroup 

and assume that M = G/K is a (compact) oriented (isotropy) irreducible homo- 

geneous space with invariant Riemannian metric g. Given (0 v~ )2eSpec(G/K), 

the equivalence classes of  full harmonic maps f :  G/K ~ S" with e(f) = 2/2 can 

be (smoothly) parametrized by a compact convex body L lying in a finite 
dimensional vector space E. The interior points of L correspond to maps with 

maximal n ( = n ( 2 ) = d i m V a - 1 ) .  Finally, for every full harmonic map 

f : G / K  ~ S  "~  with e ( f )=  2/2, we have P K ( f ) =  K( f )  and K(f)/so(n(2)+ 1)o 

f ~ - E .  

R E M A R K  1. Recall [8] that a harmonic map f :  M-~S" is said to be 
infinitesimally rigid if so(n + 1 ) o f = p K ( f ) .  Keeping the hypotheses of 
Theorem 1 we obtain that a full harmonic map f :  G/K -~ S "c~) with e(f) = 2/2 

is infinitesimally rigid if and only if L = E = {0}, or equivalently, if for every 
harmonic map f ' :  G/K ~ S "~) with e(f') = 2/2 there exists U~O(n(A) + 1) such 
that f '  = U of. 

R E M A R K  2. From the proof of Theorem 1 it follows that the space 
L ° parametrizing the (equivalence classes of) full minimal isometric immer- 
sions f :  G/K --, S" with induced Riemarmian metric (2/m)g is the intersection 
of L with a linear subspace of E. Combining this with Remark 1.1 we obtain 
that if a full minimal isometric immersion f :  G/K ~ S "c~) with induced metric 
(2/m)g is infinitesimally rigid (as a harmonic map with energy density 2/2) 
then f is (linearly) rigid in the sense of [9]. 

Using the Do Carmo-Wallach theory, in Section 3 we determine dim 
L = dim E for a spherical domain G/K = SO(m + 1)/SO(m)= S ". 

T H E O R E M  2. Let G/K = SO(m + 1)/SO(m) = S m and ;t k = k(k + m - 1)~ 
Spec(Sm), k ~ .  I f  m = 2 or k = 1, we have dimE = 0. Furthermore, denoting 
by V~, the irreducible complex SO(m+ O-module (=representation space 

for SO(m + 1)) with highest weight a = (a 1 . . . .  ,al)e(½Z) l, 1--[(m + 1)/2], /f 
k > 1, we have, for m = 3, 

(*) d imE = ~ dimc{VCs"'~)~ VCs "'-b)} 
(a,b)EA 
a,b even 

and, for m > 3, 

(**) d i m E =  ~ dimcV~ '~'°'''''°), 
(a,b)~A 
a,b e v e n  

where A c R 2 is the closed (convex) triangle with vertices (2, 2), (k, k) and 
(2k - 2, 2). 
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REMARK 3. AS shown in Section 3, dim c V~ 'b'°'''''°), occurring 
in (,)-(**), can be determined by the Weyl dimension formula [2, p. 266]). 

REMARK 4. In [4] Do Carmo and Wallach gave a lower estimate for dim L ° 
which is, for harmonic maps, replaced here by the exact determination of dim 
L(/> dim L°). In particular, by [9] and Theorem 2, for m > 2 and k = 2, 3, we 
have dim L > dim L ° = 0 and, for m > 2 and k > 3, dim L/> dim L ° >/18. 

REMARK 5. For m = 2, Theorem 2 and Remark 1 yield Calabi's rigidity 
theorem [3]. For generalities on harmonic maps, the Report [5] serves as a 
general reference and, for the Do Carmo-Wallach theory of minimal 
immersions, we use the results of [4] and [9]. 

2. P R O O F  OF THE C L AS S IF IC ATION T H E O R E M  

Let G/K be a compact oriented irreducible homogeneous space with 
invariant Riemannian metric g and origin O={K}eG/K. For fixed 
(0 ~)2~Spec(G/K), define a scalar product ( , ) on the eigenspace Vz 
C®(G/K) corresponding to 2 by 

n(,~.) + 1 
f #'l~' vol(G/K, O), (# ' i f )  = S~/~: v°I(G/K,o) ~/r 

where dim Va=n(2)+ 1 and vol(G/K,9) stands for the volume form on 
G/K. 

The canonical action of G on G/K (by isometries with respect to 9) gives 
rise to a (linear) representation of G on C°(G/K) by setting a'/~ = #oa-~, 
a~G, #~C®(G/K). This leaves the eigenspace Va~C°°(G/K) invariant and 
preserves the scalar product ( , ) on Va, i.e. we obtain an orthogonal 
representation p: G ~ SO(Va). 

For fixed orthonormal base {f~}Tt_-a)o c Va which, at the same time, 
identifies Va with R "~) ÷ 1, define a map 

f~: G/K ~ V~(= R "~)+ x) 

by 

f~(x) = ~ f~(x)f~ = (f°(x) ..... f](a)(x)), xaO/K. 
i=0  

Then [4] i m ( f a ) c S  "(z) and the induced map fz:G/K--*S "(z) is a minimal 
immersion with induced Riemannian metric (2/m)g or, keeping the original 
metric g on G/K, fa is a full harmonic (homothetic) immersion with energy 
density e(f,) = 2/2. The map fa is said to be the standard minimal immersion 
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associated to the eigenvalue 2ESpec(G/K). (Clearly, different choices of the 
orthonormal base in Va give rise to equivalent standard minimal immersions.) 
The identification Vx = R "~+1 above translates the orthogonal representa- 
tion p to a matrix representation p: G--* SO(n(2) + 1) such that fx: G/K-o S "<x) 
is equivariant with respect to p, i.e. we have faoa = p(a)ofx, aEG. Clearly, 
v ° = f~(0)~ V~ is left fixed by p(K). 

Let W ° denote the linear subspace of the symmetric square S2(Va)= 
S2(R.(~) + 1) given by 

W 0 = span R {p(a)((v°)2)~S2(V~)la~G} 

= span a { (f~(x)) 2 ~ S2(~ "t~) + X)lx ~ G/K} 

and set 

E = (W°) ± c S2(R "(x)+ 1), 

where the orthogonal complement is taken with respect to the scalar 
product (A, B)  = trace B t o A, A, BES2(R "tx) + i) (t = transpose). Finally, let 
L c E be the convex body defined by 

L = {C~EI C + I,(~)+ 1 is positive semidefinite}, 

where I,(x~+ 1 = identity of R "<x~+ 1 
Given a full harmonic map f :  G/K ~ S" with e(f) = 4/2, the system {fi}7= o 

(of components o f f )  is a linearly independent set in Vx; in particular, n ~< n(2). 
By polar decomposition of matrices, there exists a positive semidefinite 
endomorphism BeS2(R "tx~+1) such that im(B-J'x)cS "<~ and io f  is 
equivalent to Bof~, where i: S*~ S "tx~ denotes the canonical inclusion map. 
Moreover, B is uniquely determined by the equivalence class o f f .  Associate 
then to f the matrix C = B 2 -  I,(~÷ 1. As Bof~ maps into S *ta~, for xeG/K,  
we have 

( C, (f~(x)) 2 ) = (C.fx(x), fa(x) ) = (B'fx(x),  B.fa(x) ) - 1 = 0 

and hence CEL. Now, by the same argument as in the proof of the 
Classification Theorem in [9], we obtain that the correspondence f - +  C gives 
rise to a parametrization of the space of equivalence classes of full harmonic 
maps f :  G/K ~ S" with e(f) = 4/2 by the convex body L c E. Moreover, L is 
compact. 

To prove the last statement of Theorem 1, let f :  G/K-~S "tx~ be a full 
harmonic map with e(f) = 4/2. By Section 1, v~K( f )  if and only if tSvi/"(a)J~=o c 
Vx with ( f , t ) = 0 .  As f is full there exists a unique (n(2)+ 1) x (n(2)+ 1) 
matrix X such that ~ = X ' f ,  especially, K(f)= PK(f). Writing X = A + B, 



PARAMETER SPACE FOR HARMONIC MAPS 65 

Aeso(n(2) + 1) and B6S2(R n(x)+ 1), the relation 

= <Z A'Y> + <f,B-f> =0 

splits into < f , A ' f > = < f , , B . f > = O .  By fullness o f f ,  there exists a non- 
singular (n(2) + 1) x (n(2) + 1) matrix Y with f = Y.fa. Then, Y"B" Y z  
S2(R,(a)+ 1) and, for x z G / K ,  we have 

O = (f(x) ,  B. f ( x )  > = (Y ' f , t (x) ,  B. Y'fa(x) > 

= < fa(x), (Yt" B. Y)fx(x) > 

= <(Yt'B" Y), (f~(x)) 2 5, 

i.e. y t .B .  YzE .  Now, the correspondence which associates to v ~ K ( f )  the 
pair (Aof,  y t .B .Y)6(so(n(2)+ 1)of)~)E is a linear isomorphism. Hence 
K(f)/so(n(2) + 1)of ~ E, which completes the proof of Theorem 1. 

REMARK 6. Setting 

W = spanR{S2((fx),(Tx(G/K)))^ix6 G/K} ~ S2(R "(~) + 1) 

and using the notations of Section 1, by [4], we have W ° = W and L ° = L n W ±. 

3. C O M P U T A T I O N  OF d imL FOR SPHERICAL DOMAINS 

Let G = SO(m + 1), K = SO(m) and endow G/K = S m with the Euclidean 
metric. Then [1] Spec(S m) = {2k = k(k + m -  1)[keTZ+} and, for each kEZ+, 

the eigenspace V~k corresponding to 2k is the vector space ~ k  m of spherical 
harmonics of order k on S" with 

l~(k + m - 2)! 
dim ~ k  = n(2k ) + 1 = (2k + m - , k!(m - 1)! " 

Furthermore, as an orthogonal SO(m + 1)-module, ~ k  is irreducible [1] 
and, for fixed orthonormal base yci ~.(ak) k [ j g k j i = O  C~3¢/°m, the construction of 
the standard minimal immersion f ~ :  s m ~  S "(xk), in Section 2, shows that the 
SO(m + 1)-module structure p on ~¢gk is also class 1 for the pair (SO(m + 1), 
SO(m)) - i.e. there exists a unit vector v°E~cg k left fixed by p(SO(m)). (Here 
and in what follows we use the notions and results of [9] without making 
explicit references.) Conversely, every class 1 representation of (SO(m + 1), 
SO(m)) is equivalent to some ~¢gk (considered as an irreducible orthogonal 
SO(m + l)-module.) Denoting also by p the induced representation on the 
symmetric square S2(~t~k), the SO(m + 1)-submodule 

W ° =spana {p(a)((V°)2)~S2(~'~k)la~SO(m + 1) ) 
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of S 2 ( ~ )  is the sum ofa l l submodules  which are class 1 for (SO(ra + 1), SO(m)). 

For  m = 2, by elementary representat ion theory, each submodule  of 
S2(~f k) is class 1 for (SO(3),SO(2)) (since d i m ~  = 2 k +  1 is odd). Thus, 

W ° =  $ 2 ( ~ )  and hence (W°)l  = E = {0}. For  k = 1, a s tandard minimal 

immersion f~, : S m ~  S ~ is nothing but  an isometry and hence infinitesimally 
rigid [8], i.e. by Theorem 1, E = {0}. 

Setting m > 2 and k > 1, we now prove (*)-(**). As irreducibility of 
submodules in $2(~¢f~) do not  depend on field extensions, the complexifica- 

t ion W ° ®RC is the sum of all irreducible complex SO(m + 1)-modules in 
S2(~f~k®ac ) which are class 1 for ( S O ( m +  1),SO(m)). By a result of  Do  

C a r m o - W a l l a c h  in I-4] we have the following decomposi t ions 

(,') 

and 

(**9 

[k/2] 
S2(~:~'k ® C) : 0 { V(2k-2j'2j)(~ v(2k-2j'-2J)}3 

R j=O 

O) S 2(~3~kt 3 - 1 ® C )  

R 

[k/2] 

s2(  ® c )  = @ - • -1 ® c), 
R i = 0  r 

m > 3 ,  

where V~, stands for the irreducible complex S O ( m +  1)-module with 
highest weight a = ( a l , . . . , a t ) e ( ½ Z )  I, l=[(m+l)/2]. Since V ~ ' ° ' " ° ) =  

~ ® a C ,  i~Z+,  (*,) and (**') imply (*) and (**), resp. 

R E M A R K  7. Once dim c V~ 'b'°'''''°) is known for each (a, b)~A, a, b even, we 
can compute  dim L = d i m e  via (*)-(**). In what  follows, using the Weyl 

dimension formula [2] we determine dim c 1/~ 'b'°'''''°). 

(i) m = 21 even, l > 2. We have 

dim c V~ "b'°,''',°) 
(a - b + 1)(a + b + 21 - 2) rv  I (a + r - 1)(a + 21 - r) 

21 - 2 x ,=113 (r - 1)(21 - r) 

(b + r - 2)(b + 21 - r - 1) (2a + 21 - 1)(2b + 21 - 3) 
× 

,=311 (r 2 ) -~- - - r - - - ] )  x ( 21 -  1)(21- 3) 

(a-b+l)(a+b+21-2) 1 (a+21a-3)(b+21-4) 
- 2 / - 2  X a + l  b 

(2a + 2l - 1)(2b + 21 - 3) 
X 

( 2 1 -  1)(21-  3) 

(a -- b + 1)(a + b + m - 2)(2a + m - 1)(2b + m - 3) 

(a + 1)(m -- 1)(m -- 2)(m -- 3) 
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(o+o 4) o 
(ii) m = 2 1 -  1 odd, l > 2. By similar computations we obtain the same 

formula for dim c V~ 'b'°'''''°) as above. 
(iii) m = 3, 4. Again by the Weyl dimension formula 

d i m  e V(3 a'b) = dim c V~ "'-b) = (a - b + 1)(a + b + 1) 

and 

dim c V~4 "'b) = -~(a - b + 1)(a + b + 2)(2a + 3)(2b + 1). 
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