On Infinitesimal and Local Rigidity of Harmonic Maps between Spheres Defined by Spherical Harmonics (*).

G. D'Ambra (Cagliari) - G. Tóth (Columbus) (**)

Abstract

Sunto. - Si studia la deformabilità infinitesimale e locale di mappe armoniche in sfere dimostrando che le immersioni minime standard $f: S^{2} \rightarrow S^{n}$ (in particolare, la superficie di Veronese) sono localmente rigide. Si dà un esempio in cui la rigidità locale non implica la rigidità infinitesimale.

1. - Introduction and preliminaries.

To any harmonic map $f: M \rightarrow S^{n}$ [4] of a compact oriented Riemannian manifold M of dimension m into the Euclidean n-sphere S^{n} there is associated a finite dimensional vector space $K(f)$ [12] consisting of all Jacobi fields along f whose generalized divergence vanishes, i.e. a vector field v along f belongs to $K(f)$ if and only if
(i) $\nabla^{2} v=$ trace $\left\langle f_{*}, v\right\rangle f_{*}-2 e(f) v$,
(ii) $\operatorname{div}_{f} v=\operatorname{trace}\left\langle f_{*}, \nabla v\right\rangle=0$
are satisfied, where ∇ and \langle,$\rangle denote the canonical connection and metric of the$ Riemannian-connected bundle $F \otimes \Lambda^{*}\left(T^{*}(M)\right), F=f^{*}\left(T\left(S^{n}\right)\right)$, resp., f_{*} is the differential of f considered as a section of the bundle $F \otimes T^{*}(M)$ and $e(f)$ stands for the energy density of f. Identifying the Lie algebra of Killing vector fields on $\n with $s o(n+1)$ we have $s o(n+1) \circ f \subset P K(f)[11]$, where $P K(f) \subset K(f)$ denotes the linear subspace of all projectable vector fields along f. The harmonic map $f: M \rightarrow S^{n}$ is said to be infinitesimally rigid if $s o(n+1) \circ f=P K(f)[11]$.

The variation space $V(f)$ of $f: M \rightarrow S^{n}$ defined by

$$
V(f)=\{v \in K(f)\|v\|=\mathrm{const}\}
$$

can be geometrically interpreted as the set of vector fields v along f for which $t \rightarrow f_{t}=\operatorname{expo}(t v), t \in \boldsymbol{R}$, is a variation of f through harmonic maps (i.e. $f_{t}: M \rightarrow S^{n}$

[^0]is harmonic for all $t \in \boldsymbol{R})$ [10]. Equivalently, $v \in V(f)$ if and only if v is a Jacobi field along f such that $e\left(f_{t}\right)=e(f), f_{t}=\exp \circ(t v), t \in \boldsymbol{R}$, holds [10]. The harmonic $\operatorname{map} f: M \rightarrow S^{n}$ is said to be locally rigid if for every $v \in V(f) \cap P K(f)$ there exists a one-parameter subgroup $\left(\varphi_{t}\right) \subset S O(n+1)$ of isometries of S^{n} such that $f_{i}=\exp \circ(t v)=$ $=\varphi_{i} \circ f, t \in \boldsymbol{R}$, is valid.

The aim of this note is to continue the earlier studies ([9], [10], [11], [12] and [13]) describing infinitesimal and local behaviour of harmonic maps from the point of view of rigidity. In Sec. 2, using Calabi's rigidity theorem [2] we prove that any full homothetic minimal immersion $f: S^{2} \rightarrow S^{n}$ has zero variation space, in particular, is locally rigid. (This can also be considered as an extension of an earlier result, settled by elementary computation, for the Veronese surface $f: S^{2} \rightarrow S^{4}[7]$.) Finally, in Sec. 3 we prove that the harmonic map $f: S^{3} \rightarrow S^{4}$ arising from the Hopf-Whitehead construction, [14] or [8], p. 20, applied to the real tensor product $\mu: \boldsymbol{R}^{2} \times \boldsymbol{R}^{2} \rightarrow \boldsymbol{R}^{4}$ is locally rigid but non infinitesimally rigid showing that local rigidity cannot be considered as a local version of infinitesimal rigidity introduced above.

Throughout this note all manifolds, maps, etc. will be smooth and adopting the sign conventions of [6], we use the Report [4] and [5] as general references and background for the theory of harmonic maps.

We wish to thank A. Lee for giving a matrix theoretical approach for the last step in proving Theorem 2.

2. - Rigidity of homothetic minimal immersions $f: S^{2} \rightarrow S^{n}$.

A subset $H \subset S^{n}$ is said to be full if $H \in \boldsymbol{R}^{n+1}$ is not contained in any proper linear subspace of \boldsymbol{R}^{n+1}. A map $f: M \rightarrow S^{n}$ is full if f has a full image in S^{n}. The aim of this section is to prove the following:

Theorem 1. - Any full homothetic minimal immersion $f: S^{2} \rightarrow S^{n}$ has zero variation space, in particular, is locally rigid.

Remari - There is a large supply of full homothetic minimal immersions $f: S^{n} \rightarrow S^{n}$ provided (partly) by the standard minimal immersions. Namely, if $\mathscr{H}_{\lambda(s)}$, $s=2,3, \ldots$, denotes the Euclidean vector space of spherical harmonics of order s on S^{m}, i.e. the eigenspace of the Laplacian $\Delta^{s^{m}}$ corresponding to the eigenvalue $\lambda(s)=s(s+m-1)[1]$, with

$$
\operatorname{dim} \mathscr{H}_{\lambda(s)}=n(s)+1, \quad n(s)=(2 s+m-1) \frac{(s+m-2)!}{s!(m-1)!}
$$

then fixing an orthonormal base $\left\{f^{1}, \ldots, f^{n(s)+1}\right\} \subset \mathscr{H}_{\lambda(s)}$ we have $\sum_{i=1}^{n(s)+1}\left(f^{i}\right)^{2}=$ const [3] and hence, by a normalizing factor $N>0$, the standard minimal immersion
$f: S^{m} \rightarrow S^{n(s)}$ is defined by $f(x)=\left(N f^{1}(x), \ldots, N f^{n(s)+1}(x)\right), x \in S^{m}$. Then [1] f is a full homothetic minimal immersion and different choices of the base give rise to maps that differ by performing isometries of the codomain $S^{n(s)}$. In contrast to Theorem 1 we proved in [13] that for $m \geqslant 3$ odd the standard minimal immersion $f: S^{m} \rightarrow S^{n(s)}$ is non locally rigid for all $s \geqslant 2$. Combining this with the rigidity theorem of M. Do Carmo - N. Wallace [3] to the effect that, for $s \leqslant 3$, full homothetic minimal immersions $f: S^{m} \rightarrow S^{n(s)}$ are standard we obtain, in case $s \leqslant 3$, the existence of a harmonic variation $v \in V(f)$ such that the deformed harmonic maps $f_{t}=\exp \circ(t v)$ will not be in general homothetic. Further, according to a result in [13], in case $s=2$, the standard minimal immersion $f: S^{m} \rightarrow S^{n(2)}$ is infinitesimally rigid if and only if $m=2$ and, moreover, local rigidity of the Veronese surface $f: S^{2} \rightarrow S^{4}$ (i.e. case $n=n(2)=4$ of Theorem 1) was proved in [7] by matrix computation.

The proof of Theorem 1 is preceded by the following:
Lemma 1. - Let $H \subset S^{n}$ be a full subset and $\varphi:(-\varepsilon, \varepsilon) \rightarrow S O(n+1), \varepsilon>0$, a curve with $\varphi_{0}=I_{n+1}$ (=identity) such that for $y \in H$ the curve $t \rightarrow \varphi_{t}(y) \in S^{n}$, $|t|<\varepsilon$, is a geodesic segment parametrized by the arc-length. Then $X=d \varphi_{t}|d t|_{t=0} \in$ $\in \operatorname{so}(n+1)$ is a complex structure on \boldsymbol{R}^{n+1}, in particular, n is odd. Moreover, φ is a local one-parameter subgroup of $S O(n+1)$ and can then be extended to a (global) one-parameter subgroup all of whose trajectories are closed geodesics on S^{n}.

Proof. - Identifying X, as usual, with the corresponding Killing vector field on S^{n}, for $y \in H$, we have

$$
\varphi_{t} \cdot y=\varphi_{t}(y)=\exp \left(t X_{v}\right)=\cos t \cdot y+\sin t \cdot X y, \quad|t|<\varepsilon
$$

where the matrices φ_{t} and X are considered to act on the vector $y \in \boldsymbol{R}^{n+1}$ by the usual multiplication. As $H \subset S^{n}$ is full we get

$$
\begin{equation*}
\varphi_{t}=\cos t \cdot I_{n+1}+\sin t \cdot X, \quad|t|<\varepsilon \tag{1}
\end{equation*}
$$

in particular, the orthogonality relation $\varphi_{t} \cdot \varphi_{t}^{T}=I_{n+1}$, with skew-symmetricity of X, implies

$$
\left(\cos t I_{n+1}+\sin t X\right)\left(\cos t I_{n+1}-\sin t X\right)=I_{n+1}
$$

Differentiating twice at $t=0$ we obtain $X^{2}=-I_{n+1}$, i.e. X is a complex structure on \boldsymbol{R}^{w+1}. Further, for $s, t \in \boldsymbol{R}$ with $|s|,|t|,|s+t|<\varepsilon$, by (1), we get

$$
\begin{aligned}
\varphi_{s} \cdot \varphi_{t}=\left(\cos s I_{n+1}+\sin s X\right)\left(\cos t I_{n+1}+\sin t X\right) & = \\
& =\cos (s+t) I_{n+1}+\sin (s+t) X=\varphi_{s+t}
\end{aligned}
$$

i.e. φ is a local one-parameter subgroup of $S O(n+1)$. Denoting by $\varphi: R \rightarrow S O(n+1)$ the canonical extension, the Killing vector field. X is clearly induced by p and $\left(\nabla_{X} X\right) \mid H=0$ holds. The connected components of Zero $\left(\nabla_{X} X\right)$, being the intersections of the eigenspaces in \boldsymbol{R}^{n+1} of the matrix X^{2} with S^{n} (cf. proof of Th. 2 in [12]), are totally geodesic submanifolds and so fullness of H implies that $\nabla_{X} X=0$ on \S^{n}, i.e. all the integral curves of φ are closed geodesics of S^{n} and the lemma follows.

Proof of Theorem 1. - Suppose, on the contrary, that there exists a nonzero element $v \in V(f)$ and consider the deformed harmonic maps $f_{t}: S^{2} \rightarrow S^{n}, t \in \boldsymbol{R}$. As there is no holomorphic quadratic differential on $S^{2}[5]$ the map f_{t} is conformal for all $t \in \boldsymbol{R}$, i.e. there exists a scalar $\mu_{t}: S^{2} \rightarrow \boldsymbol{R}$ with $\left\|\left(f_{t}\right)_{*} X\right\|^{2}=\mu_{t}\|X\|^{2}, X \in \mathfrak{X}\left(\mathcal{S}^{2}\right)$. Conservation of the energy density along a harmonic variation, mentioned in Sec. 1 , yields

$$
\mu_{t}=\frac{1}{2} \operatorname{trace}\left\|\left(f_{t}\right)_{*}\right\|^{2}=e\left(f_{t}\right)=e(f)=\mu_{0}, \quad t \in \boldsymbol{R}
$$

and we obtain that the deformed harmonic maps $f_{t}: S^{2} \rightarrow S^{n}, t \in \boldsymbol{R}$, are homothetic (and hence minimal [4]) immersions with the same homothety constant μ_{0}. Further, fullness of f being expressed by open relations, there exists $\varepsilon>0$ such that

$$
f_{t}: S^{2} \rightarrow S^{n} \quad \text { is full for }|t|<\varepsilon
$$

Then [2] Calabi's rigidity theorem applies to the full homothetic minimal immersions f and $f_{t},|t|<\varepsilon$, yielding the existence of an isometry $\varphi_{t} \in O(n+1)$ such that

$$
\begin{equation*}
f_{t}=\varphi_{t} \circ f, \quad|t|<\varepsilon \tag{2}
\end{equation*}
$$

holds. As a linear transformation, $\varphi_{t}: \boldsymbol{R}^{n+1} \rightarrow \boldsymbol{R}^{n+1}$ is determined by its values on a base of \boldsymbol{R}^{n+1}, in particular, φ_{t} occuring in (2) is uniquely determined. We claim that the curve $\varphi:(-\varepsilon, \varepsilon) \rightarrow O(n+1)$ is smooth. Indeed, again by fullness of f, there exist $x_{1}, \ldots, x_{n+1} \in S^{2}$ such that $\left\{f\left(x_{1}\right), \ldots, f\left(x_{n+1}\right)\right\} \subset \boldsymbol{R}^{n+1}$ is a base and, for $i=1, \ldots$, $\ldots, n+1$, the curve $t \rightarrow \varphi_{t}\left(f\left(x_{i}\right)\right)=f_{t}\left(x_{i}\right),|t|<\varepsilon$, being smooth, the matrix function $t \rightarrow \varphi_{t} \in O(n+1),|t|<\varepsilon$, is also smooth. Now the preceding lemma applies (with $H=\operatorname{im} f$) yielding that n is odd. On the other hand, according to Calabi's rigidity theorem [2] any full homothetic minimal immersion $f: S^{2} \rightarrow S^{n}$ has even dimensional codomain which is a contradiction.

Thus the theorem is proved.
3. - An example of a locally rigid but non infinitesimally rigid harmonic map $f: S^{s} \rightarrow S^{4}$.

The Hopf-Whitehead construction [8] applied to the real tensor product $\mu: \boldsymbol{R}^{2} \times$ $\times \boldsymbol{R}^{2} \rightarrow \boldsymbol{R}^{4}$ gives rise to a (full) harmonic polynomial map $f: S^{3} \rightarrow S^{4}$ defined com-
ponentwise by spherical harmonics of order 2 as

$$
\begin{equation*}
j=\left(\varphi_{1}+\varphi_{2}-\varphi_{3}-\varphi_{4}, 2 \varphi_{13}, 2 \varphi_{14}, 2 \varphi_{23}, 2 \varphi_{24}\right), \tag{3}
\end{equation*}
$$

Where $\varphi_{k}(x)=x_{k}^{2}, \varphi_{i j}(x)=x_{i} x_{j}, x=\left(x_{1}, \ldots, x_{4}\right) \in \boldsymbol{R}^{4}, k=1, \ldots, 4,1 \leqslant i<j \leqslant 4$. In this section we prove the following:

Theorem 2. - For the harmonic map $f: S^{3} \rightarrow S^{4}$ we have

$$
\operatorname{dim} P K(f)=11 \quad \text { and } \quad V(f) \cap P K(f)=\{0\}
$$

in particular, as $\operatorname{dim} s o(5)=10, f$ is non infinitesimally rigid but locally rigid.
The proof of Theorem 2 is broken up into two steps.
I. Infinitesimal behaviour. - Translating the vectors tangent to $S^{4} C \boldsymbol{R}^{5}$ to the origin of \boldsymbol{R}^{5} any vector field $v: S^{3} \rightarrow T\left(S^{4}\right)$ along f gives rise to a vector-valued function $\hat{v}: S^{3} \rightarrow \boldsymbol{R}^{5}$ with $\langle f, \hat{v}\rangle=0$, where f is considered to take its values in \boldsymbol{R}^{5}. Then, by [7], $v \in K(f)$ if and only if

$$
\Delta \hat{v}=2 e(f) \hat{v}
$$

is satisfied, i.e. as $e(f)=4$, the components $\hat{v}^{r}, r=0, \ldots, 4$, are spherical harmonics of order 2 on S^{3}. Hence [1]

$$
\hat{v}^{r}=\sum_{k=1}^{4} a_{k}^{\tau} \varphi_{k}+\sum_{i<i} b_{i j}^{r} \varphi_{i j}, \quad r=0, \ldots, 4
$$

holds for some $a_{k}^{r}, b_{i j}^{r} \in \boldsymbol{R}, k=1, \ldots, 4,1 \leqslant i<j \leqslant 4$, such that $\sum_{k=1}^{4} a_{k}^{r}=0$.
As the projectable elements of $K(f)$ are to be determined we state the following:
Lemma 2. - A scalar $\mu: S^{3} \rightarrow \boldsymbol{R}$ of the form

$$
\mu=\sum_{k=1}^{4} a_{k} \varphi_{k}+\sum_{i<j} b_{i j} \varphi_{i j}, \quad \sum_{k=1}^{4} a_{k}=0
$$

with $a_{k}, b_{i j} \in \boldsymbol{R}, k=1, \ldots, 4,1 \leqslant i<j \leqslant 4$, is projectable along f (i.e. $f(x)=f\left(x^{\prime}\right)$, $x, x^{\prime} \in S^{3}$, implies $\left.\mu(x)=\mu\left(x^{\prime}\right)\right)$ if and only if

$$
\begin{equation*}
a_{1}=a_{2}=-a_{3}=-a_{4} \quad \text { and } \quad b_{12}=b_{34}=0 \tag{4}
\end{equation*}
$$

are valid.

Proof. - The first coordinate function $\varphi_{1}+\varphi_{2}-\varphi_{3}-\varphi_{4}$ of f suggests to use E. Cartan's isoparametric coordinates of degree 2, i.e. we write

$$
x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(\cos t \cos \varphi, \cos t \sin \varphi, \sin t \cos \psi, \sin t \sin \psi) \in S^{3}
$$

where $0 \leqslant t, \varphi, \psi<2 \pi$. Then we have
$f(x)=(\cos (2 t), \sin (2 t) \cos \varphi \cos \psi, \sin (2 t) \cos \varphi \sin \psi$,

$$
\sin (2 t) \sin \varphi \cos \psi, \sin (2 t) \sin \varphi \sin \psi)
$$

in partioular, the focal varieties of S^{9} parametrized by $(0, \varphi, 0)$ and $(\pi / 2,0, \psi), 0 \leqslant \varphi$, $\psi<2 \pi$, are mapped by f to $(1,0,0,0,0)$ and ($-1,0,0,0,0$), respectively. Assuming that μ is projectable we obtain

$$
\mu(\cos \varphi, \sin \varphi, 0,0)=\mathrm{const} \quad \text { and } \quad \mu(0,0, \cos \psi, \sin \psi)=\mathrm{const}
$$

Expanding these equations into Fourier polynomials the relations (4) are easily obtained. The converse being obvious the statement follows.

By Lemma 2 a vector field v along f belongs to $P K(f)$ if and only if there exist $a^{r}, b_{i j}^{r} \in \boldsymbol{R}, 1 \leqslant i<j \leqslant 4, r=0, \ldots, 4$, such that
(5) $\quad \hat{v}^{r}=a^{r}\left(\varphi_{1}+\varphi_{2}-\varphi_{3}-\varphi_{4}\right)+b_{13}^{r} \varphi_{13}+b_{14}^{r} \varphi_{14}+b_{23}^{r} \varphi_{23}+b_{24}^{r} \varphi_{24}, \quad r=0, \ldots, 4$,
holds or equivalently

$$
\begin{equation*}
\hat{v}=\frac{1}{2} A \cdot f \tag{6}
\end{equation*}
$$

Where the r-th row of A is $\left(2 a^{r}, b_{1 s}^{r}, b_{14}^{r}, b_{23}^{r}, b_{24}^{r}\right), r=0, \ldots, 4$, and in (6) the matrix A. acts on the vector f (given in (3)) by the usual multiplication. Hence, to compute $\operatorname{dim} P K(f)$, we have to determine the vector space of functions $\hat{v}: S^{3} \rightarrow \boldsymbol{R}^{5}$ of the form (6) satisfying the equation $\langle f, \hat{v}\rangle=\frac{1}{2}\langle f, A \cdot f\rangle=0$. The scalar $\langle f, A \cdot f\rangle$ is a fourth-order homogeneous polynomial whose coefficients have to vanish.

Computing these coefficients we obtain that $\langle f, A \cdot f\rangle=0$ holds if and only if A, with new variables, has the form

$$
A=\left[\begin{array}{ccccc}
0 & \alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} \tag{7}\\
-\alpha_{1} & 0 & \beta_{1} & \beta_{2} & \gamma_{1} \\
-\alpha_{2} & -\beta_{1} & 0 & \gamma_{2} & \beta_{3} \\
-\alpha_{2} & -\beta_{2} & -\gamma_{3} & 0 & \beta_{4} \\
-\alpha_{4} & -\gamma_{4} & -\beta_{3} & -\beta_{4} & 0
\end{array}\right]
$$

with
(8)

$$
\gamma_{1}+\gamma_{2}=\gamma_{3}+\gamma_{4}
$$

(The only relation to be taken into account among the spherical harmonics involved is $\varphi_{24} \varphi_{13}=\varphi_{23} \varphi_{14}$ which results (8), apart from this A is skew-symmetric.) In particular, $\operatorname{dim} P K(f)=11$ which completes the proof of the first step.
II. Local behaviour. - Assuming $v \in V(j) \cap P K(f)$, with $\|v\|=1$, the function \hat{v} has the form (6)-(7) such that

$$
\sum_{r=0}^{4}\left(\hat{e}^{r}\right)^{2}=\left\langle\frac{1}{2} A \cdot f, \frac{1}{2} A \cdot f\right\rangle=1
$$

is valid on S^{3}. All the functions $\hat{v}^{r}, r=0, \ldots, 4$, can also be considered as secondorder homogeneous (harmonic) polynomials on \boldsymbol{R}^{4}, i.e. the last equation translates into

$$
\begin{equation*}
\langle A \cdot f, A \cdot f\rangle=\left\langle A^{T} A \cdot f, f\right\rangle=4\left(\varphi_{1}+\varphi_{2}+\varphi_{3}+\varphi_{4}\right)^{2} \tag{9}
\end{equation*}
$$

which is valid on R^{4}. Denoting by

$$
H(c)=\left[\begin{array}{rrrrr}
4 & 0 & 0 & 0 & 0 \tag{10}\\
0 & 4 & 0 & 0 & c \\
0 & 0 & 4 & -c & 0 \\
0 & 0 & -c & 4 & 0 \\
0 & 0 & 0 & 0 & 4
\end{array}\right], \quad c \in \boldsymbol{R},
$$

and taking into account (3) it follows that (9) is equivalent to the relation $A^{r} A=$ $=H(c)$ for some $c \in \boldsymbol{R}$. To accomplish the proof of Theorem 2 we need to show the following:

Lemms 3. - There are no constants $\alpha_{i}, \beta_{i}, \gamma_{i} \in \boldsymbol{R}$ with $\gamma_{1}+\gamma_{2}=\gamma_{3}+\gamma_{4}$ such that the matrix A in (8) satisfies

$$
\begin{equation*}
A^{T} A=H(c) \tag{11}
\end{equation*}
$$

for some $c \in \boldsymbol{R}$.
Remark. - Writing out (11) componentwise we obtain an overdetermined system of 14 quadratic equations for the variables $\alpha_{i}, \beta_{i}, \gamma_{i} \in \boldsymbol{R}, i=1, \ldots, 4$. Using elementary computation a tedious discussion shows that this system has no solution proving Lemma 3. Nevertheless, to reduce the amount of computations involved we first use a matrix theoretical approach due to A. Lee.

Proof. - Denote by $M(p, q), p, q \in N$, the vector space of ($p \times q$) matrices and $I_{s} \in M(p, p)$ the identity. We write, with obvious notations,

$$
A=\left[\begin{array}{cc}
B & U \\
-V^{T} & C
\end{array}\right] \text { and } \quad H(c)=\left[\begin{array}{cc}
4 I_{3} & c\left[-e_{3} e_{2}\right] \\
c\left[-e_{3}^{T} e_{2}^{T}\right] & 4 I_{2}
\end{array}\right]
$$

where $B \in 80(3), O \in s o(2)$ and $\left\{e_{1}, e_{2}, e_{3}\right\} \subset \boldsymbol{R}^{3}$ is the canonical base. In terms of these decompositions (11) is equivalent to the system

$$
\begin{align*}
& B^{T} B+V V^{T}=4 I_{3} \tag{12}\\
& B^{T} U-V C=c\left[-e_{3} e_{2}\right] \tag{13}\\
& U^{T} U+O^{T} O=4 I_{2} \tag{14}
\end{align*}
$$

As $B \in \operatorname{so}(3)$ the matrices B and $B^{T} B$ are singular and have a joint eigenvector $0 \neq X \in \boldsymbol{R}^{3}$ corresponding to the zero eigenvalue. Thus, $B^{T} B X=B X=0$ and so, by (12), we obtain $V V^{T} X=4 X$, i.e. X is an eigenvector of the matrix $V V^{T} \in$ $\in M(3,3)$ with eigenvalue 4. Further, V being of size (3×2), $\operatorname{rank}\left(V V^{T}\right)=\operatorname{rank} V \leqslant 2$ and hence there exists $0 \neq Y \in \boldsymbol{R}^{3}$ such that $V V^{T} Y\left(=V^{T} Y\right)=0$ and $\langle X, Y\rangle=0$. Again by (12) we get $B^{T} B Y=4 Y$, i.e. Y is an eigenvector of $B^{T} B$ with eigenvalue 4. As B is skew, this eigenvalue must have multiplicity 2 which implies the existence of a vector $0 \neq Z \in \boldsymbol{R}^{3}$ with $\langle X, Z\rangle=0$ such that $\{X, Y, Z\} \subset \boldsymbol{R}^{3}$ is a base and $\operatorname{Span}\{Y, Z\} \subset \boldsymbol{R}^{3}$ is the eigenspace of $B^{T} B$ corresponding to the eigenvalue 4. Applying (12) to Z we get $B^{T} B Z+V V^{T} Z=4 Z+V V^{T} Z=4 Z$, i.e. $\operatorname{span}\{\bar{X}, Z\} \subset \boldsymbol{R}^{3}$ is the nullspace of $V V^{T}$.

In particular, rank $\left(V V^{T}\right)=$ rank $V=1$, i.e. the coloumns of V are linearly dependent. We may suppose that the first coloumn $\left(\alpha_{3}, \beta_{2}, \gamma_{3}\right)$ of V is nonzero since the other case can be treated similarly. Then there exists $p \in \boldsymbol{R}$ such that

$$
\begin{equation*}
\alpha_{4}=p \alpha_{3}, \quad \gamma_{4}=p \beta_{2}, \quad \beta_{3}=p \gamma_{3} \tag{15}
\end{equation*}
$$

hold. On the other hand, the vector $\left(-\beta_{1}, \alpha_{2},-\alpha_{1}\right)$ is in the nullspace of B and nonzero since $B \neq 0$. So, we may choose X as

$$
X=\left(-\beta_{1}, \alpha_{2},-\alpha_{1}\right)
$$

Then, by (12), we get

$$
\nabla \nabla^{r} X=\left(1+p^{2}\right)\left(-\alpha_{3} \beta_{1}+\alpha_{2} \beta_{2}-\alpha_{1} \gamma_{3}\right)\left(\alpha_{3}, \beta_{2}, \gamma_{3}\right)=4\left(-\beta_{1}, \alpha_{2},-\alpha_{1}\right)=4 X
$$

i.e. putting $q=\frac{1}{4}\left(1+p^{2}\right)\left(-\alpha_{3} \beta_{1}+\alpha_{2} \beta_{2}-\alpha_{1} \gamma_{3}\right)(\neq 0)$ we obtain

$$
\begin{equation*}
\beta_{1}=-q \alpha_{3}, \quad \alpha_{2}=q \beta_{2}, \quad \alpha_{1}=-q \gamma_{3} \tag{16}
\end{equation*}
$$

and hence

$$
\left(1+p^{2}\right)\left(\alpha_{3}^{2}+\beta_{2}^{2}+\gamma_{3}^{2}\right)=4
$$

Further, a direct computation shows that (13) is equivalent to the system

$$
\begin{equation*}
\left(1+p^{2}\right) o\left(\alpha_{1}, \alpha_{2}\right)=4 q \beta_{4}(p,-1) \tag{17}
\end{equation*}
$$

Moreover, from (11) it follows that

$$
\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3}+\left(\beta_{1}-\beta_{4}\right)\left(\beta_{2}-\beta_{3}\right)=0
$$

and multiplying this with c and using (15)-(16)-(17) we get

$$
\begin{equation*}
\beta_{4}^{2}\left(p^{2}-1\right)=0 \tag{18}
\end{equation*}
$$

Again, by making use of (15)-(16), we can write (11) componentwise is terms of the variables $\alpha_{3}, \beta_{2}, \beta_{4}, \gamma_{1}, \gamma_{2}, \gamma_{3}, p, q \in \boldsymbol{R}$ and, by (18), an easy discussion of the possible cases leads to contradiction.

REFERENCES

[1] M. Berger - P. Gauduchon - E. Mazet, Le spectre d'une variété Riemannienne, Lecture Notes in Math., Springer-Verlag, 194 (1971).
[2] E. CaLabi, Minimal immersions of surfaces in euclidean spheres, J. Differential Geometry, 1 (1967), pp. 111-125.
[3] M. Do Carmo - N. Wallaci, Minimal immersions of spheres into spheres, Ann. of Math., 93 (1971), pp. 43.62.
[4] J. Eells - L. Lemaire, A report on harmonic maps, Bull. London Math. Soc., 10 (1978), pp. 1-68.
[5] J. Eells - L. Lemaire, Selected topics on harmonic maps, CBMS Reg. Conf. Ser. 50, 1983.
[6] S. Kobatasht - K. Nomizu, Foundations of differential geometry, Vol. I, Interscience, 1963.
[7] A. Lee - G. Tóth, On variation spaces of harmonic maps into spheres, Acta Sci. Math. Hungar. (to appear).
[8] R. T. Smirh, Harmonic mappings of spheres, Thesis, Warwick University, 1972.
[9] G. Tótн, On variations of harmonic maps into spaces of constant curvature, Ann. Mat. Pura Appl., (IV), Vol. CXXVIII (1981), pp. 389-399.
[10] G. Tótн, on harmonic maps into locally symmetric Riemannian manijolds, in Symposia Math., vol. XXVI, Academic Press (1982), pp. 69-94.
[11] G. Tóth, Construction des applications harmoniques d'un tore dans la sphère, Annals of Global Analysis and Geometry, vol, 1, no. 2 (1983), pp. 105-118.
[12] G. Tóte, On rigidity of harmonic maps into spheres, J. London Math. Soc., (2), 26 (1982), pp. 475-486.
[13] G. Tóтн, Flexible harmonic maps into spheres, in Symposium on Global Riemannian Geometry, E. Horwood, John Wiley \& Sons (to appear).
[14] R. Wood, Polynominal maps from spheres to spheres, Inventiones math., 5 (1968), pp. 163-168.

[^0]: (*) Entrata in Redazione il 18 agosto 1982.
 (**) During the preparation of this paper the second-named author was supported by the C.N.R. and enjoyed the hospitality of the Università di Cagliari, Istituto Matematico

