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S u n t o . -  Si studia la de]ormabilit~t i~]i~.itesimale e locale di mappe av~w~iche in s]ere dimo- 
strando ehe re immersioni minime staq~dard ]: $2--~ S ~ (in particolare, la super]ieie di Ve- 
ronese) sono loealmente rigide. Si d~t un eseml)io i~ c~d la rigidith locale non impliea la rigi. 
dit~t i~]initesi~ale. 

1. - Introduction and preliminaries.  

To any  harmonic  map ]: M -> S ~ [4] of ~ compact  oriented Riemannian  mani- 
fold M of dimension m into the  Eucl idean n-sphere S" there  is mssociated a finite 
dimensional vector  space K(])[12J consisting of all Jacobi  fields along ] whose 
generalized divergence vanishes~ i.e. a vector  field v along ] belongs to K(]) if and  

only if 

(i) V2v = t race ( ] , ,  v ) ] , - -  2e(])v,  

(ii) divlv = t race <],,  Vv) - -  0 

are satisfied, where V and ( ,  } denote the  canonical connection and metr ic  of the 
Riemannian-eonnected bundle  Y Q A * ( T * ( M ) ) ,  Y - =  ]*(T(~')) ,  resp., ] ,  is the  dif- 

ferential  of ] considered a.s a section of the  bundle  F ~ ) T * ( M )  and e(]) stands for 
the  energy densi ty of ]. Ident i fy ing  the  Lie algebra of Killing vector  fields on S" 
with so(~ ~-1)  we have so(n 4 - 1 ) o ] c P K ( ] ) [ 1 1 ] ,  where P K ( ] ) o K ( I )  denotes the 
linear subspaee of all projectable  vector  fields along ]. The harmonic  map ]: M --~ S" 
is said to  be infinitesimally rigid if so(n 4- 1)o] = t)K(]) [11]. 

The var ia t ion space V(]) of ]: M--~ S ~ defined by  

V(]) = (v e K(f)Ilt~][ = const) 

caa  be geometrical ly in terpre ted as the  set of vec to r  fields v along ] for which 

~ ]~ = expo(tv), t e R ,  is a var ia t ion  of ] th rough  harmonic  maps (i.e. ]2: M -> S" 
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is harmonic  for s l l t  ~R)  [10]. EquivMently,  v c V(/) if and only if v is a Jacobi  
field along ] such tha t  e(/~) ----- e(]),/~ = expo(tv), t 6 R, holds [10]. The harmonic 
m a p / :  M -+ S ~' is said to be locally rigid if for every  v ~ V(]) ~ P K ( ] )  there  exists a 
one-parameter  subgToup (~c. d c SO(n  q- 1) of isometries of ~" sl~eh tha t  ]t = expo(tv) ---- 
= (sto], t e R, is valid. 

The aim of this note  is t o continue the earlier studies ([9 ], [10 ], [11], [12 ] and [13 ]) 
describing infinitesimal and local behaviour  of harmonic  maps from the  point  of 
view of rigidity. Ill  Sec. 2, using Calabi's r igidity theorem [2] we prove tha t  any 
full homothet ie  minimal immersion ]: S ~ - + S  '~' has zero variat ion space, in par- 
t i tular ,  is locally rigid. (This can also be considered as an extension of an earlier 
result,  sett led by  e lementary  computat ion:  for the  Veronese snrfaee ]: S 2 --> S ~ [7].) 

Finally,  in See. 3 we prove ~hat the  harmonic map ]: S '~ -~ S 4 arising f rom the 
Xopf-Whi tehead construction, [14] or [8], p. 20, applied ~o the  reM ~ensor product  
#:  R" •  ~ -> R ~ is locally rigid but  non infinitesimally rigid showing t.ha~ local 
r igidity c anno~ be considered as s local version of infinitesimal rigidity in t roduced 
above. 

Throughon% this no~e all manifolds, maps, e~c. will be smoo~h and adopt ing the 
sign conventions of [6], we use the Repor t  [4] and [5] as general references and 
background for the  *heory of harmonic  maps. 

We wish to  t hank  A. Lee for giving a mat r ix  theoretical  approach for the last 
step in proving Theorem 2. 

2. - R i # d i t y  o f  homothet ic  min imal  immers ions  f :  S 2 --~ S". 

A subset H c S" is said to be full if H ~ R '~+~ is not  contained in any  proper  linear 
subspaee of R '~+~. A map ]: M -> S" is ftfll if ] has a full image in S ~. The aim of 
this section is ~o prove the following: 

THEORE:~[ 1. -- Any full homo~hetie minimal immersion f: S 2 --> S - has zero va- 
tin*ion space, in part icular,  is locally rigid. 

tgE~ARX -- There is a large supply of full homot.hetic minimal immersions 
]: S "~ -~ S'~ provided (part ly) by  the s tandard minimal immersions. Namely,  if ;E~(~), 

s : - 2 ,  3, ..., denotes the Euclidean vector  space of spherical harmonics of order s 
on S~, i.e. the  eigenspace of the  Laplacian A s~ corresponding to the eigenvalue 
/~(s) = s(s -[- m -  I) [I], with 

(s + m - - 2 ) !  
dim 36~(s)= n(s) @ 1 ~ n(s) = (2s @ m -  1) 

s !(m - 1) ! 

~(s) + 1 

then  fixing an or thonormal  base {]~, ..., f,(,)+l} c ~ . (~)we have ~ ( # ) 2  const [3] 
i = l  

and hence, by  a normalizing factor  ~V > 0~ the  s tandard  minimal immersion 
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]: S"~-+ S ~(") is defined by  ](x) = (3T/~(m), ..., N]~(~)+~(x)), x e S% Then [1] ] is a full 
homothe t ic  minimM immersion and differcn~ choices of the  base give rise to  maps 
tha t  differ by  performing isome~ies of %he codomain S ~(~). In  contrast  to Theorem 1 
we proved in [13] tha t  for m > 3  odd the s tandard  minimal  i m m e r s i o n / :  Sin--> S ~(s) 
is non locally rigid for all s > 2 .  Combining this with the rigidity theorem of 5{. Do 
CAI~[o - N. WXLLACg [3] to  the effect that~ for s<3~ full homothet ic  minimal im- 
mersions ]: S'~-+ S "(~) are s tandard  we obtain~ in case s<3~ the existence of a har- 
monic var ia t ion v e V(J) such ~hat the  deformed harmonic  maps ]t = expo(tv) will 
tto~ be in general homo$hetie.  Fm~ther, according to a resul~ in [13], in case s = 2, 

the  s tandard  minimal  immersion ]: S"~-+ S "(:) is infinitesimally rigid if and only if 
m - =  2 and,  moreover~ local r igidi ty of the Veronese sttrface J: S~-~ S ~ (i.e. case 
n. = n(2) = 4 of Theorem 1) was proved  in [7] by  ma t r ix  computat ion.  

The proof  of Theorem 1 is preceded by  the  following: 

L ~ f ~ A  1. - Le t  H c S ~ be a full subset and  c#: ( - - s ,  s) -+ SO(n-] -1 ) ,  e > 0, a 
curve with ~ 0 =  I~+~ ( =  identi ty)  such t h a t  for y e H the  curve t-->q),(y) e S ' ,  
it I < s, is a geodesic segment ps ramet r ized  by  the arc-length. Then X = dcA/dtl,=oe 

so(n d- 1) is a complex s t ructure  on R "+~, in part icular ,  ~ is odd. Moreover, ~ is a 
local one-parameter  subgroup of SO(~ -i- 1) and can then  be extended to a (global) 
one-parameter  subgroup all of whose trajectories are closed geodesics on S% 

PRoof'. - Ident i fy ing  X~ as usual~ with the corresponding Killing vector  field 
on S ' ,  for y ell, we have 

~ot'y=~ot(y) = e x p ( t X ~ )  = e o s t . y - 4 - s i n t . X y  , ]tl< e , 

where the  matrices q)t and X are considered to act  on the vector  y ~ R ~'+~ by the 
usual multiplication. As H c S ~' is full we get 

(i) ~0~ = cos t ' I~+l ~- sin t . X ,  itl < s ,  

in part icular ,  the  or~hogonality relat ion % . ? [  = 1.+1, with skew-symmetr ic i ty  of X ,  
implies 

(cos tI~+l @ sin tX)(cos tim+t-- sin tX)  = I~+~ . 

Differentiating twice at  t = 0 we obtain X ~ =  --I.+1, i.e. X is a complex strnc- 
~ure on R ~+I. Fur ther ,  for s, t c R with I. l, ltl, 18 + tl < e, by  (1), we get 

c#~'~ot = (cos sI~+l @ sin sX)(cos tI.+~ @ sin tX)  = 

= cos (s § t ) I .+ l  § sin (s ~ t ) X  -~ q~,+~ 
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i.e. ~0 i s a  local one-parameter  subgroup of SO(n ~- 1). Denoting by  q): R ---> SO(n ~- 1) 
the  canonical extension, the  Killing vector  field X is clearly induced by  ~ and 
(VxX)]H = 0 holds. The connected components  of Zero (VxX), being the  intersec- 
t ions of the  eigenspaees in R ~+1 of the ma t r ix  X 2 with S ~ (cf. proof  of Th. 2 in [12]), 
are to ta l ly  geodesic submanifolds and so fullness of H implies tha t  V x X  = 0 on S ~, 
i.e. all the  integral curves of ~ ~re closed geodesics of S ~ and  the  lemma follows. 

PRooF o~ Tn-EO~E~r 1. - Suppose, on the  contrary,  t ha t  there  exists a nonzero 
d e m e n t  v e V(]) and consider the deformed harmonic  maps ],: S ~ -~ S ' ,  t e R. As 
there  is no holomorphie quadrat ic  differential on S ~ [5] the  map ft is conformal  for 
all t ~ R, i.e. there  exists a scalar #t: S 2 -+ R with [I(/~).XII ~ = #tltxu 2, x ~ 3c($2). 
conservat ion  of the  energy density along a harmonic  variation,  ment ioned in See. 1, 
yields 

# t =  �89 e(],) = e(]) t e R ,  

and we obtain t ha t  the  deformed harmonic maps ]t: S ~ --~ S ~, t ~ R,  are homothet ic  

(and hence minimal  [4]) immersions with the  same homothe ty  constant/~o. Fur ther ,  
fullness of ] being expressed by  open relations, there  exists s > 0 such tha t  

It: S * - + S  * is flfll for It I <  e .  

Then [2] CALAm'S rigidity theorem appties to the full homothet ie  minimal immer- 

sions ] and Jr, ]tl < ~, yielding the  existence of an i somet ry  ~vte O(n ~- 1) such tha t  

(2) I t=   ,ol, ttl< 

holds. As a linear t ransformat ion,  %: R ~+1 -~ R ~+1 is determined b y  its values on a 

base of R ~+1, in part icular ,  qt oeearing in (2) is uniquely  determined.  We claim that  
the  curve ? :  (-- s, e) ---~ O(n -]-1) is smooth.  Indeed,  again by  fullness of /, there  
exist xl, ..., x~+~e ~ such t ha t  {/(xl), . . . , / (x.+l)} c R "+~ is a base and, for i ---= 1, ..., 
..., n -t- 1, the  carve  t --->%(](x~)) --=/t(xl), I t l<  e, being smooth,  the  ma t r ix  func- 
t ion t --~ q)te O(n ~ 1), It[ < e, is also smooth.  Now the  preceding lemma applies 
(with H = im ]) yielding tha t  n is odd. On the  other  hand,  according to  CALABI'S 
rigidity theorem [2] any  full  homothet ie  minimal  immersion /: S: -~ S" has even 
dimensional codomain which is a contradict ion.  

Thus the  theorem is proved.  

3. - An example of a locally rigid but non infinitesimally rigid harmonic map/ :  S ~ -+ S 4. 

The IcIopf-Whitehead construct ion [8] applied to the  real tensor product  #:  R '  • 
x R ' - +  R 4 gives rise to a (full) harmonic  polynomial  map ]: S 3 -+ S ~ defined corn- 
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ponenCwise by  spherical harmonics of order 2 as 

(3) ] = ( 9 1 +  ~ - - % - -  %, 2%3, 2%4, 2%~, 2%4) , 

where 9~(x) = x~, %~(x) = x,x~, x = (Xl~ ..., x,) e R  4, k ----- 1, ..., 4, 1 < i <  j < 4 .  In this 

section we prove  the following: 

TEv.ORE)~ 2. - For  the harmonic  map ]: 88--~ S 4 we have 

dim P K ( i  ) ---- 1 1  and V(]) g~ P K ( I )  = {0}, 

in part icular ,  as dim so(5) = 10, / is non infinitesimally rigid bu t  locally rigid. 

The proof  of Theorem 2 is broken up into %wo steps. 

I .  In] in i tes imal  behaviour. - Translat ing the  vectors t angent  to S*c  R 5 to  the  
origin of R s any  vec*or field v: S ~ -~ T ( S  4) along ] gives rise to a vector-value4 
funct ion ~: S 3 --> R 5 with (], ~ = 0, where ] is considered to  take  its values in R 5. 

Then,  by  [7], v ~ K(])  if and only if 

Ar = 2e ( l )~  

is satisfied, i.e. as e(]) -= 4, the  components  Y, r = 0, ..., 4, are spherical harmonics 
of order 2 on S 8. t tenee  [1] 

4 

= Z , = o ,  
k = l  i < i  

4 

holds for some ark, b~jER, k = 1 , . . . , 4 , 1 < i < j < 4 ,  such t h a t  ~ a r = k  0. 
/ c = l  

As the  projectable  elements of K(]) are to  be determined we state the  following: 

Ln)i~tA 2. - A scalar #:  $3-+ R of the form 

4 

k = l  i < ~  

4 

~ a k =  0 ,  
k = l  

wiCh a~, b~j~R,  k = 1, ..., 4, l < i ~  j < 4 ,  is projectable along ] (i.e. ](x) = ](x'), 

x, x ' ~ S  8, implies #(x) ---- #(x'))  if and only if 

(4) a~ = a 2  = - -  a a  = - -  a, ,  a n d  b~2 = b 3 ,  = 0 

are valid. 
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P ~ o o L  - The first coordinate funct ion % -4- %-- %-- q~ of ] suggests to use 
1~. C A ~ . ~ ' s  isoparametr ic  coordinates of degree 2, i.e. we write 

x = (x~, x2, x3, xa) = (cos t cos% cos t s in% sint  cos % sint  sin ~v) ~ S a , 

where 0 < t ,  % ~ < 2~r. Then  we have 

](x) = (cos (2t), sin (2t) cos ~v cos % sin (2t) cos 9 sin ~, 

sin (2t) sin q~ cos % sin (2t) sin ~ sin ~ ) ,  

in part icular ,  the  focal varieties of ~8 paramctr ized  by  (0, ?,  0) and (~/2, O, ?),  0 <~ ,  
< 2z, are mapped  by  ] to (1, 0, 0, 0, 0) and (-- 1, 0, 0, 0, 0), respectively. Assum- 

ing t h a t  tt is projectable  we obtain 

#(cos ?,  sin ?,  0, 0) = eonst  and #(0, 0, cos % sin ~v) = cons~. 

Expanding" these equations into Fourier  polynomials  the relations (4) are easily 

obtained. The converse being obvious the  s ta tement  follows. 
By  Lemma  2 a vector  field v along ] belongs to PK(])  if and only if there  exist 

a ~, b~j~R,  1 < i <  j < 4 ,  r = 0 , . . . ,  4, such t h a t  

holds or equi-calently 

(6) v = � 8 9  

~ ~ b r b ; ~ ) , r = O ,  4, and in (6) the  m a t r i x A  where the  r - th  row of A is (2a ~, b13, b~4, 28, .. . ,  
acts on the  vector  ] (given in (3)) by  the  usual multiplication. Hence, to  compute  
dim _PK(]), we have to  determine the  vector  space of functions ~: S 3 ~ R 5 of the 

form (6) satisfying the  equat ion <], ~> = �89 <], A.]> = 0. The scalar <], A .f> is a 
four th-order  homogeneous polynomial  whose coefficients have to  vanish. 

Computing these coefficients we obtain tha t  (], A .]> = 0 holds if and only if A, 

with new variables, has the form 

(7) A =  

- 0 =~ =~ =~ ~ !  

--=~ 0 ~ ~ 7~ 

--=~ - - A  0 7~ ~ 

- -=~  - - ~  - -7~ 0 ~ 

- = ~  - -y~ - - p ,  - -p~ 0 
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wi~h 

(8) 71 + Y~ = Y3 + Y~. 

(The only relat ion ~o be t~ken i~$o accoun~ among the  spherical harmonies involved 
is % ~  = # % ~  which resv_l~s (8), apar t  f rom this A is skew-symmetric.)  In  par- 
~icular, dim P K ( / ) =  11 which completes ~he proof of ~he firs~ step. 

I I .  Loca l  behavimer. - Assuming v e V ( / )  ~ PK(/ ) ,  with [lv]l = 1, the  funct ion 
has the  form (6)-(7) such tha~ 

4 

(~,)~= ( �89  � 8 9  = 1 
r = 0  

is valid on S ~. All the  functions ~ ,  r = 0, ..., ~, ca~ also be considered as second- 
order homogeneous (harmonic) polynomials  on Rd, i.e. the  last equat ion translates 
into 

(9) (A-] ,  A .1) = ( A ~ A  .], ])  = 4(~& -]- % -j- ~Y3 -}- ~)2 

which is valid on R ~. 

(10) ~ ( e )  = 

Denor by  

"4 0 0 0 0 

0 ~ 0 0 c 

0 0 ~: - - c  0 

0 0 - - c  4 0 
i 

0 c 0 0 4 

, c ~ R ,  

and taking into account  (3) i~ follows ~ha~ (9) is equivalent  to the  relation A T A  = 

= H ( c )  for some v e R. To accomplish the  proof  of Theorem 2 we need to  show the  
following: 

LESnVM 3. - There are no constants ~ , ~ y ~ e R  with Y ~ @ Y , = Y s + 7 ~  such 
tha t  the  ma t r ix  A in (8) satisfies 

(11) 

for some c e R .  

A ~ A  = H(c) 

R E ~ g K .  -- Writ ing out (11) componentwise we obtain an overdetermined system 
of 14 quadrat ic  equations for the  variables ~.~, ~ ,  7 ~ e R ,  i = 1, ..., 4. Using ele- 
m en t a ry  computa t ion  a tedious discussion shows tha t  this sys tem has no solution 
proving L e m m a  3. Nevertheless, to  reduce the  am o u n t  of computat ions involved 
we firs~ use a ma t r ix  theoret ical  approach due to  A. L~]~. 

2 - Annali di Mat~malica 
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/ ,  

A =  _ W  and ] 

where B eso(3)~ Ceso(2)  and (e~ e~, e ~ } c R  ~ is the canonical base. 
these decompositions (11) is equivalent to the system 

P~oo~. - Denote by M(p, q), p, q e N, ~he vector space of (p • matrices and 
e M(p,  p) the identity. We write, with obvious notations, 

In terms of 

(12) 

(13) 

B~B -+- VV~:= 4I~ , 

B ~ U - V C  =e[--eae~], 

U" U + C ~ C = 4I~ . 

As B e so(3) the matrices B and B r B  are singular and have a join~ eigenveetor 
0 va X e R ~ corresponding to the zero eigenvaine. Thus, B T B X  = B X  = 0 and so, 
by (12), we obtain VV~:X = 4X, i.e. X is an eigenvector of %he matrix V V ~ e  
e M(3, 3) with eigenvalue 4. ~ttrther, V being of size (3 X2)~ rank ( V V  T) ---- rank V~<2 
and hence ~here exists 0 va Y e R s such that  V V  ~ Y ( =  V ~ Y)  = 0 and (X, Y) = 0. 
Again by (12) we get BTB:Y-----4Y, i.e. :Y is an eigenvector of B~B with eigen- 
value 4. As B is skew, this eigenvalue must have multiplicity 2 which implies the 
existence of a vector 0 : / : Z e R  3 with <X,Z> = 0  such that  ( X , Y , Z } a R  s is a 
base and Span {Y, Z} c R s is the eigenspaee of B~B corresponding to the eigen- 
value 4. Applying (12) to Z we get BTBZ + VV~"Z-~ 4Z + VV~'Z = 4Z, i.e. 
Span {:Y, Z} c R s is the nullspace of V V  T. 

In particular, rank ( V V  T) -----rank V-----1, i.e. the eoloumns of V are linearly 
dependent. We may suppose tlmr the first coloumn (~,  fl~, 7~) of V is nonzero since 
the other case can be treated similarly. Then there exists p e R such that  

hold. On the other hand, the vector (--ill, ~ , - - ~ )  is in the nullspace of B and 
nonzero since B va 0. So~ we may choose X as 

Then, by (12), we get 

i.e. putting q = ~(1 + p2)(_ ~8fil + ~fi2-- ~y~) (v~ 0) we obtain 

(16) / ~ l = - - q , ~ ,  ,~----qfi~, ~l------q~ 
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und hence 

(i+ 2 2 

Further ,  a direct computa t ion shows tha t  (]3) is equivalent to the system 

(1;> (1 + p~)c(:~, ~)  = 4qt%(p, - ~ )  . 

5{oreover, f rom (11) it fo]lows t h a t  

~ + ~.~. + ( A -  L ) ( A - / % )  = 0 

and mult iplying this with c und using (15)-(16)-(17) we get 

,%(p- -  1) = o .  (18) ~ 

Again~ by  making use of (]5)-(16)~ we can write (11) componentwise is terms of the 

variables : ~  fl~, fl~, 7~  7~, Ya, P, q ~ R and~ by  (18)~ an easy discussion of the pos- 
sible cases leads to contradiction. 
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