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0. Introduction

In [3] A. Lichnerowicz proved that every compact oriented Riemannian manifold
M with nonnegative Ricci tensor is the total space of a fibre bundle with flat torus
base space and with totally geodesic bundle projection. He also showed that the
universal covering M splits isometrically as the product of a flat Euclidean space R*
and a compact Riemannian manifold M, with nonnegative Ricci tensor. Here
k = max {b,(M)| M is a finite covering of M}.

J. Cheeger and D. Gromoll obtained a stronger result [1], namely, they proved
that there is a finite covering of M which is diffeomorphic with some T* x M, but
in many cases this splitting fails to be isometric.

The purpose of this paper is to generalize these results to the case where no
curvature assumptions are supposed for M. More complete study of this topic can
be found in [5]. Sections 1 and 2 contain nothing essentially new but the treatment
slightly differs from the usual one as the basic ideas are accumulated in a com-
mutative cube contained in Section 2. Our results are presented in Sections 3 and
4 together with some applications.

Throughout this paper all manifolds, maps, bundles, etc. will be smooth, i.e.
of class C*®, unless stated otherwise.

1. Preliminaries (2] and [3])

Let M be a compact oriented Riemannian manifold with metric tensor ( , ). Suppose
that this metric tensor is extended to an inner product of tensors of any type on M.
Ifefe /\'(M) are r-forms on M and («, f) denotes their inner product, then
their global scalar product is defined by
o, > = § (@, P,
M
where v e /\"(M), n = dim M, is the volume element of M.
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The operator of exterior codifferentiation 0: /\'(M) - /\'“(M) is the adjoint
of the exterior differentiation with respect to the global scalar product. The Laplace
operator A4: /\'(M) — /\"(M) is defined by 4 = d o 9+0 o d. It is an elliptic self-
adjoint second-order differential operator and an r-form « is harmonic, i.e., Ada =0
if and only if d« = 0 and da = 0. The dimension of the linear space # of harmonic
i-forms on M is the first Betti number b,(M) = p of M.

Denote by G the maximal connected subgroup of the group of isometries
of M with respect to the compact-open topology. Then G is a compact Lie group
and its Lie algebra L can be identified with the Lie algebra of Killing vector fields
on M.

The isometries of M pull back harmonic 1-forms into harmonic 1-forms and
thus Lxf = 0 holds for every X € L and B € #. Using the formula Ly = d o ix+
+ix o d, it follows that iy # is constant on M. Define

I={XelL ixp =0 for every f e #}.
IfX,YeL and g € #, then
0 = (@)X, Y) = 3(X(ixB)— Y(ixP)—itx.aB) = —}itx, 03B
and thus [L, L] = I. Hence I = L is an ideal and L/I is commutative. By the defi-
nition of I, it follows that if X € L has a critical point on M then X €L

Now, let M and M’ be compact oriented Riemannian manifolds with metric
tensors ( , ) and ( , ), respectively, and let f: M — M’ be a map of class C2.

Denote by T = /\"(T*(M)) and F = f*(T(M")) the bundle of r-covectors on M

and the pull-back of the tangent bundle T(M’) of M via f; respectively. Set /\"(M, F)
= I'(F® T'"), the space of r-forms on M with values in the vector bundle F. Then

the elements of /\°(M, F) are nothing but the vector fields along f and the tangent
map f, turns out to be a specific 1-form on M with values in F. The Levi-Civita
connections of M and M’ yield a connection V on the vector bundle F® T and
it is orthogonal with respect to the induced Riemannian metric ( , ) on the fibres
of FQ T™"). Thus F® T} becomes a Riemannian-connected bundle. There is a
first order differential operator

d: /\'i,F)-» /\""'(M, F)
characterized by the identity
du®p) = (Vi) A B+u®(dp),
where ueI'(F) and B € /\'(M). Note that we cannot expect that d? = 0 except

in the flat case.
The operator of exterior codifferentiation

a: /\'(M, F)~» \"7'(M, F)

is the adjoint of d with respect to the global scalar product. The Laplace operator

4: N, F)-» /\'(M, F)
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is defined by 1 = d o 9+@ < d. It is an elliptic self-adjoint second-order differential
operator and an r-form ¢ on M with values in F is harmonic, i.e., A¢ = 0, if and
only if dp = 0 and 3¢ = 0. The map f: M — M is said to be harmonic if A fu = 0.
Every harmonic map is necessarily of class C*. By local calculation it can be shown
that df, = 0 always holds, i.e., harmonicity of f is equivalent to df, = 0. The
physical interpretation of harmonic maps is strongly connected with the energy
functional

EN =4 § (B, fo)e,
M

namely, it turns out that f'is harmonic if and only if it is an extremal of the energy
functional. Harmonic maps appear in many different problems of differential geo-
metry. If dimM = 1, then harmonic maps are the closed geodesics of M'. If M
and M’ are Kihler manifolds then holomorphic maps of M into M’ are harmonic
with respect to any compatible metrics.

A more restricted class of maps is that of totally geodesic maps, i.e., the maps
for which Vf, = 0. They can be characterized by the property that they map
geodesics into geodesics linearly.

By developing a general Weitzenbdck formula for Riemannian-connected
bundles, it follows that every harmonic map from a Riemannian manifold with

nonnegative Ricci tensor into a nonpositively curved Riemannian manifold is totally
geodesic.

2. Harmonic maps into tori ([3])

Let M be a compact oriented Riemannian manifold with first Betti number b (M)
= p. If my € M is a base point, then the total space of the universal covering 7: M
— M can be considered as the space of homotopy classes of curves starting from
the point m,. Denote /1, € M the class of nul]-homotoplc loops.

If g e, then d(#*p) = n*(dﬂ) = 0. Since M is simply connected, 7*fB = du
holds for some scalar u on M determined up to an additive constant. Let

J: M > #*
be defined by
J() (] = u(i)—u(fho),
where z*f = du. By the de Rham isomorphism, H,(M; R) = #*. The first integral
homology group H,(M; Z) maps onto a discrete subgroup of H,(M; R) of maximal
rank. Denote by P < ##* the discrete subgroup corresponding to H,(M; Z) under
the de Rham isomorphism.

The fundamental group 7, (M, mo) acts on M such that the orbits are nothing

but the fibres of z: M - M. If e M, sen (M, my) and B € # with a*f = du,
then

(i) —J(m) 18] = utsi)—u(i) = § B,

Jo
m-3.sm
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where the last equality is obtained by the Stokes formula on M. Since m~! - s
defines a 1-cycle, we have that J(s#)—J() € P, i.e., the map J can be projected
down yielding a map J: M — #*/P. The torus B(M) = 5*/P is called the canonical
torus of M and thus we obtain a commutative diagram

M- s
n ]Ip
4 +
M- > B(M)

The components of J with respect to a flat coordinate neighbourhood of B(M)
can be expressed by the u’s. Since 0 = n*(9f) = d(=*f) = ddu = Au, these com-
ponents of J are harmonic functions on M. Thus, if we endow #* and B(M) with
the flat metric, we obtain that J: M — B(M) is harmonic.

The map J is called the Jacobian map of the Riemannian manifold M.

Let M and M’ be compact oriented Riemannian manifolds with base points
my and myg, respectively. Assume that f: M — M’ is a base point preserving map
such that f pulls back harmonic 1-forms of M’ into harmonic 1-forms of M. Then
Jinduces a linear map f*: 5#' — 3. Since f is a base point preserving, there is a map
f M- M’ such that the diagram

-~

Y v/
ﬂl I:l
M—L oM

commutes. Denoting the dual map of f*: s’ — 3 by the same symbol, we have
the following diagram

M _i M
= -
J J
o

KR p*

In order to show that this diagram commutes, let 71 € M, ' € #’ and n'*f’ = du'.
Then n*f*f’ = f*n'*f = f*du' = dw o) and so (f* - N@B1 = JEW*A]
= (W o))~ (' o o) = w(f())—w'(g) = J'(f())[] which accomplishes
the proof. Under the de Rham isomorphisms H,(M; R) = #* and H,(M’, R)
= j#'* the induced homomorphisms correspond to each other and thus f*(P) = P’.
Thus the linear map f* projects down to an affine map B(f): B(M) —» B(M’) yielding
the commutative diagram

wx I, e

|

r ?

! 15
B(M) -2, (M)
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Each face of the cube

commutes and so the bottom face

M I &

Jl lr
B(M) 292, B(Mm)
also commutes.
In the special case where M = M’ and f: M — M’ is an isometry we obtain
a translation B(f): B(M) — B(M). This leads to the following:

THEOREM 1. The Jacobian map J: M — B(M) defines a homomorphism
J: G- Gy,
where Gy is the group of translations of B(M), such that J o g = f(g) o J holds, g € G.

The Lie algebra Ly of Gy can be identified with the Lie algebra of uniform
vector fields on B(M). By local calculation it can be shown that every Killing vector
field X on M projects down to a uniform vector field J,(X) on B(M) and J(exp(tX)(m))
= exp(#/4(X))(J(m)) holds for every te R and me M and, moreover, Jy(X) =0
if and only if X € L. It follows that the homomorphism J induces J, on the Lie
algebra level and that the Lie algebra of I" = kerJ is nothing but the ideal I.

Another application of the commutative cube can be obtained by assuming
that f: M — M’ is harmonic and that the Ricci tensor of M’ is nonnegative. It is
known that in this case s#’ consists of parallel forms. An easy local calculation
shows that a harmonic map pulls back parallel 1-forms into harmonic 1-forms.
Thus in this case the commutativity of the cube holds.

Quite specifically, let M’ = 0 be a flat torus. Then B(f) = 8 and J' = id, and
hence we obtain the following:

THEOREM 2. Every harmonic map f: M — 0 into a flat torus 0 can be factorized
through the Jacobian map yielding an affine map

B(f): B(M)— 0
such that f = B(f) o J.




238 G. TOTH

1t is not true in general that a harmonic map onto a positively curved manifold
pulls back harmonic r-forms into harmonic r-forms, when r > 2, as the following
example shows:

ExaMPLE. Let f: T2 — S2 be a harmonic surjective map, [4]. By Sard’s theorem
there exists a regular point x € T2 of f; i.e., (rank f)(x) = 2. If w denotes the volume
element of S2, then (f*w)(x) # 0. Let us suppose that f*w is harmonic, i.e., f*w
= A-o for some 0 # A € R, where v denotes the volume element of 72. It means
that rank f = 2 everywhere on T2, i.e., f'is a local diffeomorphism. If g denotes the
metric tensor of S2, then f*g is a metric tensor of 72 and T2 is nonnegatively curved
with respect to this metric. Thus f*g must be flat, i.e. S2 can be endowed with a flat
metric which is impossible. Hence f*w is not harmonic.

Note that the preservation of harmonicity under harmonic mappings was
extensively studied in [6].

3. Fibrations by the Jacobian map

In this section we shall investigate the following problem:

ProBLEM. Does the Jacobian map J: M — B(M) define a fibration?
The answer is “may be” and our main purpose is to give a sufficient condition
for the affirmative answer. Our main result is the following:

THEOREM 3. Let M be a compact oriented Riemannian manifold with Jacobian
map J: M — B(M) and assume that rankJ < codimI everywhere on M. Then imJ
= 9 = B(M) is a toroid and

J: M- ¢

defines a harmonic fibre bundle with compact connected fibres and with finite commu-
tative structure group.

Sketch proof. The ideal I = L is a direct summand and thus we can choose
a complementary ideal P = L such that P is the Lie algebra of a closed and connected
subgroup Q = G. Then Q- I'= G and OnI' = H = G is finite. Since L' = I,
it follows that @ = G is central and especially a toroidal subgroup of G. The sub-
group imJ = Hy = Ggisatoroidin Gg and J = JIQ Q — Hgisalocal xsomorphxsm
with kernel H. Then J is equivariant with respect to the local isomorphism I If
m € M and y € B(M), then denote by 6(m) and #(y) the orbit of the action @ and
Hj through m and y, respectively. Then, for every m € M, the map

71Q(m): Q(m) > #(J(m))
is a finite covering and every isotropy subgroup of the action of @ on M is contained
in H. Especially, rankJ = codimI everywhere on M. The image of J consists of a
unique orbit & of the action of Hz on B(M). Thus &# = B(M) is a toroid and J: M
— @ is a harmonic map of maximal rank. If y € @, then J-}(y) = M is a closed
submanifold and if # € Hy and g € Q with J(g) = h, then g maps J~*(y) isometrically
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onto J'(A(3)). Thus J: M — & is a fibre bundle with structure group H. Let ~ be
the relation on M defined by:

m ~ m' if the points m and m' lie in the same connected component of a fibre.
Then v = M/~ is a finite covering of & and there is a factorization

M 2 B(M)
\A /
\t

with harmonic u: M — v. By Theorem 2 there exists an affine map »: B(M) - 7
with g =v<J. So,gevel =0opu=1J ie., o and » are inverses of each other.
Hence v = B(M) and the fibres are connected which accomplishes the proof.

If the Ricci tensor field of M is nonnegative, then rankJ = b;(M) = codim/
and we obtain the classical result of [3] as follows:

COROLLARY. Let M be a compact oriented Riemannian manifold with nonnegative
Ricci tensor field. Then the Jacobian map J: M — B(M) defines a totally geodesic
fibre bundle with compact connected fibres and with discrete (finite) commutative
structure group.

Remark. A similar statement is valid for compact Kahler manifolds. Let W
be a compact Kihler manifold with b;, (W) = p. The maximal connected subgroup
G of holomorphic transformations of W with respect to the compact-open topology
is a complex Lie group and its Lie algebra L can be identified with the complex
Lie algebra of infinitesimal holomorphic transformations of W. If H denotes the
complex vector space of holomorphic 1-forms of type (1, 0) on W, then let I = {4
€L| igf = 0 for every closed p € H}. I has similar properties as that of the Rie-
mannian case. An analogous construction yields the so-called Albanese map

J: W A(W),
where the Albanese torus A(W) is of complex dimension p.

THEOREM 4. Let W be a compact Kdihler manifold with Albanese map J.
W — A(W). Assume that.

(i) There exists a subalgebra in L complementary to I,

(ii) rankJ < codim[ everywhere on W.

Then there exist a complex torus ¢ with dim® = codimI and a holomorphic
fibration J: W — & with compact connected fibres and with discrete structure
group.

Note that condition (i) is essential as one can see from the structure of complex
solvable Lie algebras.

4. Coverings

The fibre structure of M defined in Theorem 3 gives some information about the
structure of finite coverings of M.
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THEOREM 5. Let M be a compact oriented Riemannian manifold and assume
that rankJ < codimI = q everywhere on M. Then there exists a finite covering
©: M — M the total space of which sphts diffeomorphically as T*x M,, where M,
is a closed submanifold of M. Especially, M is di iffeomorphic with the product R x M.

Sketch proof. We use the notations and terminology of the proof of Theorem
3. Let § = 6(m) be a principal orbit of the action of Q on M through some point
my € M. Then J|f: 6 —» & is a finite covering. Denote by M the pull-back of the
bundle J: M - @ via J|f. Then M = {(m, m’) e 0x M| J(m) = J(m’)} and there
is a commutative diagram

M— M
| ¥
0 J|e = 19

Since p: M — M is a finite covering, it remains only to show that M has the required
product structure. Let A: M - 0x My, Mo = J~1(J(my)), be defined by A(m, m")
= (m, g(m")), where g € Q such that g(m) = g(m,). Since @ is principal, it follows
that 2 is well-defined and diffeomorphism.
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