On variation spaces of harmonic maps into spheres

A LEE and G. TOTH

1. Introduction

Given a harmonic map $f: M \to S^n$ [3] of a compact oriented Riemannian manifold M into the Euclidean n-sphere S^n , $n \ge 2$, a vector field v along f, i.e. a section of the pull-back bundle $\mathcal{F} = f^*(T(S^n))$, gives rise to a (one-parameter, geodesic) variation $f_t = \exp(tv): M \to S^n$, $t \in \mathbb{R}$, where $\exp: T(S^n) \to S^n$ is the exponential map. The element $v \in C^\infty(\mathcal{F})$ is said to be a harmonic variation if f_t is harmonic for all $t \in \mathbb{R}$ and the set of all harmonic variations v (or the variation space) of f is denoted by $V(f) \subset C^\infty(\mathcal{F})$. Then [11] $v \in V(f)$ if and only if $\|v\| = \cos st$, and

(i) $\nabla^2 v = \operatorname{trace} R(f_0, v) f_0$ (i.e. v is a Jacobi field along f [3]),

(ii) trace $\langle f_{\bullet}, \nabla v \rangle = 0$,

where \langle , \rangle and ∇ are the induced metric and connection of the Riemannian-connected bundle $\mathcal{F} \otimes \Lambda^*(T^*(M))$, $\nabla^2 = \operatorname{trace} \nabla \circ \nabla$ [9], R is the curvature tensor of S^0 and the differential f, of f is considered as a section of $\mathcal{F} \otimes T^*(M)$. Denote by K(f) the linear space of all vector fields v along f satisfying (i) and (ii). The equation (i) being (strongly) elliptic [9] $\dim K(f) < \infty$ and $V(f) = \{v \in K(f) \mid ||v|| = 1\}$.

The purpose of this paper is to give a geometric description of the variation space $V(i) \subset K(i)$ ($\cong \mathbb{R}^N$) of the canonical inclusion $i: S^m \to S^m$, where N = m(m+1)/2 + (n-m)(m+1). In Section 2 we collect the necessary tools from matrix theory used in the sequel, especially we describe the singular value decomposition of rectangular matrices (see e.g. [7]). In Section 3 the problem of determining $V_0(i)$ is reduced to the geometric characterization of an (algebraic) set of matrices. Then the singular value decomposition of these matrices are exploited to get a description of $V_0(i) \subset K(i)$ as a set of orbits (under a linear Lie group action) which contains a (twisted) simplex as a global section (Theorem 1). In particular, we prove that

Received August 9, 1982.

 $V(id_{S^{2r-1}})$, $r \in \mathbb{N}$, is the double cone over the irreducible Hermitian symmetr space $SO(2r)/U(r) = V_0(id_{S^{2r-1}})$. (Note that $V(id_{S^{2r}}) = 0$ because $\chi(S^{2r}) = 2$ [11] In Section 4 we first give an alternative description of the linear space K(f). particular, we obtain that there is a one-to-one correspondence between the elemen of $V_0(f)$ and the orthogonal pairs $f, f^1: M \to S^n$ of harmonic maps with the san energy density $e(f) = e(f^1)$ [3]. Second, as an example, we determine K(f) for the Veronese surface $f: S^2 \to S^4$ and prove that $K(f) = K(\mathrm{id}_{S^4})$ and $V(f) = V(\mathrm{id}_{S^4}) =$ hold.

Throughout this paper all manifolds, maps, bundles, etc. will be smooth, i. of class C-. The report [3] is our general reference for harmonic maps though v adopt the sign conventions of [6].

We thank Professor Eells for his valuable suggestions and encourageme

during the preparation of this work.

2. Preliminaries from matrix theory

First we fix some notations used in the sequel. Denote by M(p,q) the lin space of $(p \times q)$ matrices and, as usual, let I_p and 0_p the unit and zero eleme of M(p, p). A matrix $A \in M(p, q)$ with entries a_{ij} , i = 1, ..., p, j = 1, ..., q, said to be (rectangular) diagonal if

$$a_{ij} = \begin{cases} 0, & \text{if } i \neq j, \ i = 1, ..., p, \ j = 1, ..., q, \\ \sigma_i, & \text{if } i = j, \ i = 1, ..., \min(p, q) \end{cases}$$

holds. We write $A = \text{diag}(\sigma_1, ..., \sigma_d)_q^p$ with $d = \min(p, q)$ and, in case p

we omit the indices p and q. The singular value decomposition of rectangular matrices is given in the fo ing theorem. (For the proof, see [7].)

Theorem A. For any matrix $B \in M(p,q)$ there exist orthogonal ma $V \in O(p)$ and $U \in O(q)$ such that

$$V^{\mathsf{T}}BU = \operatorname{diag}\left(\sigma_{1},...,\sigma_{d}\right)_{q}^{p}$$

with $\sigma_i \ge 0$, $i = 1, ..., d = \min(p, q)$. The matrices V, U and the values σ_i determined by the relations:

(A₁)
$$V^{T}BB^{T}V = \text{diag}(\sigma_{1}^{2}, ..., \sigma_{d}^{2}, ..., \sigma_{p}^{2}),$$

$$(A_1)^T B^T BU = \text{diag}(\sigma_1^2, ..., \sigma_d^2, ..., \sigma_q^2),$$

$$(A_3) BU = V \operatorname{diag} (\sigma_1, ..., \sigma_d)_d^p,$$

where $\sigma_i = 0$ for $d < i \le \max(p, q)$.

Remark. The numbers $\sigma_i \ge 0$, i = 1, ..., d, are called the singular values of B. Clearly, V and U can always be chosen such that $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_d$ holds.

Denote by $\Lambda_r \in so(2r)$ the skew-symmetric matrix

$$\Lambda_{r} = \operatorname{diag}\left(\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \dots, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}\right)$$

and put $A_1 = A$. In the next theorem we collect some properties of skew-symmetric natrices (cf. [8] pp. 151, 231).

Theorem B. For any matrix \$\mathcal{I}(so(p))\$ we have

(B₁) rank $\mathcal{J}=2r\leq p$;

(B₂) The 2r nonzero eigenvalues of f appear in pairs $\lambda_{u-1} = \lambda_u = \pm \sqrt{-1}\sigma_i$ with $\sigma_i > 0$, i = 1, ..., r, while zero is an eigenvalue with multiplicity p - 2r;

 (B_3) There exists $U \in O(p)$ such that

1)
$$U^{\mathsf{T}} \mathcal{J} U = \operatorname{diag} \left(0_{p-2r}, \sigma_1 \Lambda, ..., \sigma_r \Lambda \right)$$

r equivalently

17
$$U^{\mathsf{T}} \mathcal{J} U = \begin{cases} \operatorname{diag}(\hat{\sigma}_1 \Lambda, ..., \hat{\sigma}_{p/2} \Lambda), & \text{if } p \text{ is even,} \\ \operatorname{diag}(0, \hat{\sigma}_1 \Lambda, ..., \hat{\sigma}_{(p/2)} \Lambda), & \text{if } p \text{ is odd,} \end{cases}$$

where $\hat{\sigma}_1 = ... = \hat{\sigma}_{[(p-2r)/2]} = 0$ and $\hat{\sigma}_{\{(p-2r)/2\}+i} = \sigma_i$, i = 1, ..., r; (B_d) With the same matrix $U \in O(p)$ we have

2)
$$U^{\mathsf{T}}(-\mathcal{J}^2)U = \begin{cases} \operatorname{diag}(\hat{\sigma}_1^2 I_2, ..., \hat{\sigma}_{p/2}^2 I_2) & \text{if } p \text{ is even,} \\ \operatorname{diag}(0, \hat{\sigma}_1^2 I_2, ..., \hat{\sigma}_{(p/2)}^2 I_2), & \text{if } p \text{ is odd,} \end{cases}$$

n particular, the nonzero singular values of f have even multiplicities.

3. Variation space of the canonical inclusion i: $S^m \rightarrow S^n$

Let $i: S^m \to S^n$ be the canonical inclusion and let $W^1, ..., W^k$, k=n-m, lenote the system of orthonormal parallel sections of the normal bundle of i defined by the standard base vectors $e_{m+1}, ..., e_{m+1} \in \mathbb{R}^{m+1}$.

According to a result of [11] $v \in K(i)$ if and only if the tangential part f of is a Killing vector field on S^m and there exist vectors $b_1, ..., b_k \in \mathbb{R}^{m+1}$ such that he orthogonal decomposition

$$v_x = \mathcal{J}_x + \sum_{j=1}^k \langle b_j, x \rangle W_x^j, \quad x \in S^m,$$

* valid. Hence the linear map $\Psi: K(i) \to so(m+1) \times M(k, m+1)$ defined by $\Psi(v) = -(\mathcal{J}, B)$, $v \in K(i)$, where \mathcal{J} is the tangential part of v and $B \in M(k, m+1)$

consists of the row vectors $b_1, ..., b_k \in \mathbb{R}^{m+1}$ occurring in the decompositio v above, is a linear isomorphism. In what follows, we identify K(i) $so(m+1) \times M(k, m+1)$ via Ψ . Further, $V(i) = \mathbb{R}V_0(i) \subset K(i)$, where $V_0 = \{v \in K(i) \mid ||v|| = 1\}$. Thus, for $v = (\mathcal{I}, B) \in V_0(i)$, we have

$$1 = \|v_x\|^2 = \|\mathcal{J}_x\|^2 + \sum_{j=1}^k \langle b_j, x \rangle^2 = \langle -\mathcal{J}^2 x, x \rangle + \langle B^\mathsf{T} B x, x \rangle, \quad x \in S^m,$$

i.e.

$$V_0(i) = \{ (\mathcal{J}, B) \in so(m+1) \times M(k, m+1) | -\mathcal{J}^2 + B^T B = I_{m+1} \}.$$

The objective of this section is to give a geometric description of the set V_0 $\subset K(i)$. Before stating our main theorem we introduce some notations. For the g positive integers m and n, $m \le n$, set

$$t = \begin{cases} \min((m+1)/2, [k/2]), & \text{if } m+1 \text{ is even,} \\ \min(m/2, [(k-1)/2]), & \text{if } m+1 \text{ is odd,} \end{cases}$$

where k=n-m, and define

$$\Delta_t = \{(\sigma_1, ..., \sigma_t) \in \mathbb{R}^t \mid 1 \ge \sigma_1 \ge ... \ge \sigma_t \ge 0\}.$$

So $\Delta_t \subset \mathbb{R}^t$ is a (linear) simplex which reduces to a point if t = 0. (Note that $t \ge$ and equality holds if and only if m = n is even, in which case $V_0(i) = \emptyset$ [11] and put $\Delta_{-1} = \emptyset$.)

A linear representation of the Lie group $O(m+1)\times O(k)$ on the vector s $K(i) = so(m+1)\times M(k, m+1)$ is given by

$$(U, V) \cdot (\mathcal{J}, B) = (U \mathcal{J} U^{\mathsf{T}}, V B U^{\mathsf{T}}),$$

 $(U, V) \in O(m+1) \times O(k)$, $(J, B) \in so(m+1) \times M(k, m+1)$. Clearly, the subset $V_0(C) \subset K(i)$ is invariant, i.e. $V_0(i)$ is the union of orbits crossing $V_0(i)$. Finally introduce certain subgroups of $O(m+1) \times O(k)$ which will be the isotropy groups at points of $V_0(i)$. For given nonnegative integers $a_0, b_0, c_1, c_2, \ldots$, with $m+1=a_0+2c_1+\ldots+2c_{s+1}$ and $k=a_0+2c_1+\ldots+2c_s+b_0$ define the subgroups

$$\mathcal{G}(c_1, ..., c_{s+1}) = \{ (A_0, C_1, ..., C_{s+1}; A_0, C_1, ..., C_s, B_0) \in O(m+1) \times O(k) \mid A_0 \in O(a_0), B_0 \in O(b_0), C_i \in U(c_i), i = 1, ..., s+1 \},$$

where $U(c_i)$ is considered as a subgroup of $SO(2c_i)$ via the canonical embedd $U(c_i) \rightarrow SO(2c_i)$, i = 1, ..., s + 1. The isotropy type i.e. the set of all conjugacy cla of a subgroup $\mathcal{G} \subset O(m+1) \times O(k)$ is denoted by (\mathcal{G}) . The main result of section is the following:

Theorem 1. There exists an embedding $\Phi: \Delta_t \to K(i)$ such that $\Phi(\Delta_t)$ a global section of the invariant subset $V_0(i)$ (i.e. $\Phi(\Delta_t) \subset V_0(i)$ and any orbit

(i) cuts $\Phi(\Delta_i)$ at exactly one point). Moreover, for $\sigma = (\sigma_0, ..., \sigma_0, \sigma_1, ..., \sigma_1, ..., \sigma_{i+1}, ..., \sigma_{s+1}) \in \Delta_i$, where $1 = \sigma_0 > \sigma_1 > ... > \sigma_s > \sigma_{s+1} = 0$ and σ_i occurs c_i times in i = 0, ..., s+1, the isotropy type of the orbit through $\Phi(\sigma)$ is $(\mathcal{G}(c_1, ..., c_s, c_{s+1} + \cdot ([(m+1)/2]-t)^+))$ ($t = positive\ part$) or equivalently this orbit has the form

$$(O(m+1)\times O(k))/\mathcal{G}(c_1, ..., c_s, c_{s+1}+([m+1)/2]]-t)^+).$$

n particular, for each open face Δ of the simplex Δ , the orbits through $\Phi(\Delta)$ have he same type.

Remarks 1. Each orbit consists of 1, 2 or 4 components. More precisely, he subgroups $\mathscr{G}(c_1, ..., c_{s+1}) \subset SO(m+1) \times SO(k)$ being connected, the orbit $O(m+1) \times O(k))/\mathscr{G}(c_1, ..., c_s, c_{s+1} + ([(m+1)/2] - t)^+)$ has N components, where

$$N = \begin{cases} 1, & \text{if } k > 0 \text{ and } a_0 b_0 > 0, \\ 2, & \text{if } k > 0, \quad a_0 b_0 = 0 \text{ and } a_0 + b_0 > 0 \text{ or if } k = 0, \\ 4, & \text{if } k > 0 \text{ and } a_0 = b_0 = 0. \end{cases}$$

2. By a result of [13] for any locally rigid harmonic embedding $f: M \to S^m$ we have V(f) = V(i), where $i: S^m \to S^m$ is the inclusion and m is the dimension of the least totally geodesic submanifold of S^m containing the image of f. Thus Theorem 1 gives a description of the variation space of all locally rigid harmonic embeddings.

The proof of Theorem 1 is broken up into a few lemmas. Let $(f, B) \in V_0(i)$ be fixed. Then, by Theorem B, there exists $U \in O(m+1)$ such that $U^T f U$ and $U^T (-f^2) U$ have the form (1') and (2), resp., with

$$0 \leq \hat{\sigma}_1 \leq \ldots \leq \hat{\sigma}_{\lfloor (m+1)/2 \rfloor}.$$

Thus, by $B^TB = I_{m+1} + \mathcal{J}^2$, we obtain

$$U^{\mathsf{T}}B^{\mathsf{T}}BU = \begin{cases} \operatorname{diag}(\sigma_1^2 I_2, \dots, \sigma_{\lfloor (m+1)/2 \rfloor}^2 I_2), & \text{if } m+1 \text{ is even,} \\ \operatorname{diag}(1, \sigma_1^2 I_2, \dots, \sigma_{\lfloor (m+1)/2 \rfloor}^2 I_2), & \text{if } m+1 \text{ is odd,} \end{cases}$$

where $\sigma_i^2 = 1 - \hat{\sigma}_i^2$, i = 1, ..., [(m+1)/2]. Clearly, $1 \ge \sigma_1^2 \ge ... \ge \sigma_{[(m+1)/3]}^2 \ge 0$ is satisfied. Then the values σ_i^2 , i = 1, ..., [(m+1)/2], occurring twice in B^TB , are the eigenvalues of the positive semidefinite matrix B^TB . The nonzero eigenvalues of B^TB and BB^T being the same, the system of eigenvalues of $BB^T \in M(k, k)$ can be obtained from that of $B^TB \in M(m+1, m+1)$ by supplementing or omitting |k-(m+1)| zeros according as $k \ge m+1$ or k < m+1. In the latter case, for some index $t_0 \le [k/2]$, $\sigma_i = 0$, $i > t_0$, must be valid. The determination of the minimal value of t_0 can be done by making distinction according to the parity of k. Hence

we have

$$U^{\mathsf{T}}B^{\mathsf{T}}BU =$$

$$=\begin{cases} \operatorname{diag}\left(\sigma_{1}^{2}I_{2}, \dots, \sigma_{(m+1)/2}^{2}I_{2}\right) & \text{for } k \geq m+1, \ m+1 \text{ even,} \\ \operatorname{diag}\left(\sigma_{1}^{2}I_{2}, \dots, \sigma_{k/2}^{2}I_{2}, 0_{m+1-k}\right) & \text{for } k \text{ even, } k < m+1, \ m+1 \text{ even,} \\ \operatorname{diag}\left(\sigma_{1}^{2}I_{2}, \dots, \sigma_{(k/2)}^{2}I_{2}, 0_{m+1-2(k/2)}\right) & \text{for } k \text{ odd, } k < m+1, \ m+1 \text{ even,} \\ \operatorname{diag}\left(1, \sigma_{1}^{2}I_{2}, \dots, \sigma_{(k-1)/2}^{2}I_{2}\right) & \text{for } k \geq m+1, \ m+1 \text{ odd,} \\ \operatorname{diag}\left(1, \sigma_{1}^{2}I_{2}, \dots, \sigma_{(k-1)/2}^{2}I_{2}, 0_{m+1-k}\right) & \text{for } k \text{ odd, } k < m+1, \ m+1 \text{ odd,} \\ \operatorname{diag}\left(1, \sigma_{1}^{2}I_{3}, \dots, \sigma_{(k-1)/2}^{2}I_{2}, 0_{m-2((k-1)/2)}\right) & \text{for } k \text{ even, } k < m+1, \ m+1 \text{ odd,} \end{cases}$$

A case-by-case verification shows that the minimal value of t_0 is the numb defined before Theorem 1. Thus we obtain

$$U^{\mathsf{T}}B^{\mathsf{T}}BU = \begin{cases} \operatorname{diag}\left(\sigma_{1}^{2}I_{2}, \dots, \sigma_{i}^{2}I_{2}, 0_{m+1-2i}\right), & \text{if } m+1 \text{ is even,} \\ \operatorname{diag}\left(1, \sigma_{1}^{2}I_{2}, \dots, \sigma_{i}^{2}I_{2}, 0_{m-2i}\right), & \text{if } m+1 \text{ is odd,} \end{cases}$$

and consequently (1') has the form

$$U^{\mathsf{T}} \mathcal{J} U = \begin{cases} \operatorname{diag} \left(\partial_1 \Lambda, \dots, \partial_t \Lambda, \Lambda_{(m+1-2\epsilon)/2} \right), & \text{if } m+1 \text{ is even,} \\ \operatorname{diag} \left(0, \partial_1 \Lambda, \dots, \partial_t \Lambda, \Lambda_{(m-2\epsilon)/2} \right), & \text{if } m+1 \text{ is odd.} \end{cases}$$

Lemma 1. Let $(\mathcal{J}, B) \in K(i)$. Then $(\mathcal{J}, B) \in V_0(i)$ if and only if there $(U, V) \in O(m+1) \times O(k)$ such that $(\mathcal{J}, B) = (U \mathcal{J}(B) U^T, V B(\sigma) U^T, where$

$$\mathcal{J}(\hat{\sigma}) = \begin{cases} \operatorname{diag}(\hat{\sigma}_{1}\Lambda, ..., \hat{\sigma}_{t}\Lambda, \Lambda_{(m+1-2t)/2}) & \text{if } m+1, \text{ is even} \\ \operatorname{diag}(0, \hat{\sigma}_{1}\Lambda, ..., \hat{\sigma}_{t}\Lambda, \Lambda_{(m-2t)/2}), & \text{if } m+1, \text{ is odd}, \end{cases}$$

$$B(\sigma) = \begin{cases} \operatorname{diag}(\sigma_{1}I_{2}, ..., \sigma_{t}I_{2}, 0_{d-2t})_{k}^{m+1}, & \text{if } m+1, \text{ is even}, \\ \operatorname{diag}(1, \sigma_{1}I_{2}, ..., \sigma_{t}I_{2}, 0_{d-1-2t})_{k}^{m+1}, & \text{if } m+1, \text{ is odd}, \end{cases}$$

with $\sigma \in \Delta_t$, $\hat{\sigma}_i = \sqrt{1 + \sigma_i^2}$, i = 1, ..., t, and $d = \min(m+1, k)$.

Proof. If $(\mathcal{J}, B) \in V_0(i)$ then there exists $U \in O(m+1)$ such that $U^T B^T_i = B(\sigma)^T B(\sigma)$ and $U^T \mathcal{J} U = \mathcal{J}(\hat{\sigma})$ with $0 \le \hat{\sigma}_1 \le ... \le \hat{\sigma}_{\lfloor (m+1)/3 \rfloor}$. The diagentries of $U^T B^T B U$ are the eigenvalues of $B^T B$ and hence, by Theorem A, exists $V \in O(k)$ such that the pair (U, V) perform the singular value decompos of B, i.e. we have $V^T B U = B(\sigma)$. Thus, $(U^T \mathcal{J} U, V^T B U) = (\mathcal{J}(\hat{\sigma}), B(\sigma))$, of The converse being obvious the proof is finished.

By the lemma above the map $\Phi: \Delta_t \to K(i)$, $\Phi(\sigma) = (\mathcal{J}(\hat{\sigma}), B(\sigma))$, $\sigma \in \Delta_t$, embedding with $(O(m+1) \times O(k)) \cdot \Phi(\Delta_t) = V_0(i)$. Moreover, the eigenvalue \mathcal{J} and the singular values of B are invariants characterizing the orbit thr (\mathcal{J}, B) uniquely. Thus $\Phi(\Delta_t)$ is a global section on $V_0(i)$ which accomplishe proof of the first statement of Theorem 1.

Let $\sigma = (\sigma_0, ..., \sigma_0, \sigma_1, ..., \sigma_1, ..., \sigma_{s+1}, ..., \sigma_{s+1}) \in A_t$ be fixed with $1 = \sigma_0 > \sigma_1 > ... > \sigma_s > \sigma_{s+1} = 0$ and σ_i occurs c_i times in σ_i , i = 0, ..., s+1. It remains compute the isotropy type of the orbit through $\Phi(\sigma)$. The isotropy subgroup $\Phi(\sigma)$ consists of pairs (U, V) such that $U \mathcal{J}(\hat{\sigma}) = \mathcal{J}(\hat{\sigma}) U$ and $VB(\sigma) = B(\sigma) U$. rst we study the second relation. Consider $B(\sigma) \in M(k, m+1)$ as a matrix

$$B(\sigma) = \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix},$$

here $\Sigma = \text{diag}(\sigma_0 I_{a_0} \sigma_1 I_{3c_1}, ..., \sigma_s I_{2c_s}) \in M(r, r), r = a_0 + 2 \sum_{i=1}^s c_i,$

$$a_0 = \begin{cases} 2c_0, & \text{if } m+1 \text{ is even,} \\ 2c_0+1, & \text{if } m+1 \text{ is odd,} \end{cases}$$

nd 0 on the right lower corner is of size $(k-r)\times(m+1-r)$.

Lemma 2. Let $(U, V) \in O(m+1) \times O(k)$ such that $VB(\sigma) = B(\sigma)U$ holds. Then we have $V = \text{diag}(A_0, C_1, ..., C_s, B_0)$ and $U = \text{diag}(A_0, C_1, ..., C_s, C_{s+1})$, there $A_0 \in O(a_0)$, $B_0 \in O(k-r)$, $C_1 \in O(2c_1)$, i = 1, ..., s, $C_{s+1} \in O(m+1-r)$.

Proof. Let $V \in O(k)$ and $U \in O(m+1)$ have the partitioned forms (conformal o that of $B(\sigma)$ above):

$$V = \begin{bmatrix} V_0 & R \\ S & B_0 \end{bmatrix} \text{ and } U = \begin{bmatrix} U_0 & P \\ Q & C_{s+1} \end{bmatrix},$$

where V_0 , $U_0 \in M(r,r)$, $B_0 \in M(k-r,k-r)$, $C_{s+1} \in M(m+1-r,m+1-r)$. (The size of C_{s+1} can be expressed as $m+1-r=2c_{s+1}+2([(m+1)/2]-t)^+)$. Substituting these into the equations $VB(\sigma)=B(\sigma)U$, $VV^T=I_k$, $UU^T=I_{m+1}$ we obtain R=0, S=0, $V_0 \in O(r)$, $B_0 \in O(k-r)$ and P=0, Q=0, $U_0 \in O(r)$, $C_{s+1} \in O(m+1-r)$. Thus the first equation reduces to $V_0 \Sigma = \Sigma U_0$, i.e. by $\det \Sigma = \sigma_1^{2c_1}...\sigma_s^{2c_2}>0$, $V_0 = \Sigma U_0 \Sigma^{-1}$. Substituting this into the orthogonality relation $V_0^TV_0=I_r$ we get $U_0\Sigma^2=\Sigma^2U_0$ which gives for $U_0=(C_{ij})$, $C_{00} \in M(a_0,a_0)$, $C_{i0} \in M(2c_i,a_0)$, $C_{0j} \in M(a_0,2c_j)$, $C_{ij} \in M(2c_i,2c_j)$, i,j=1,...,s, the relations $C_{ij}=0$, if $i\neq j$. Hence, using the notations $C_{00}=A_0$ and $C_{ii}=C_i$, i=1,...,s, we obtain $U_0={\rm diag}(A_0,C_1,...,C_s)$ with $A_0 \in O(a_0)$, $C_i \in O(2c_i)$, i=1,...,s. As U_0 and Σ commute we have $V_0=U_0$ which accomplishes the proof.

Consider now the second equation $UJ(\partial)=J(\partial)U$, where U has the form given in Lemma 2. Clearly, this equation is satisfied if and only if $C_i \in Z(\Lambda_{e_i})$, $i=1,\ldots,s,C_{s+1}\in Z(\Lambda_{(m+1-r)/2})$, where $Z(\Lambda_p)$ denotes the centralizer of Λ_p in O(2p).

Lemma 3. The centralizer $Z(\Lambda_p) \subset O(2p)$ is connected and there exist $U_0 \in O(2p)$ such that $Ad(U_0)Z(\Lambda_p) = U(p) \subset SO(2p)$, where Ad denotes the adjacent representation of O(2p).

Proof. It is well-known that $Z(\Lambda_p) \subset SO(2p)$ (cf. [8], Ch. IV. § 29, p. 248). F we prove that $Z(\Lambda_p) \subset SO(2p)$ is connected. Clearly, $\exp\left((\pi/2)\Lambda_p\right) = \Lambda_p$, wh $\exp: so(2p) \to SO(2p)$ is the exponential map. Hence $T = \exp\left((R\Lambda_p) \subset SO(2p)\right)$ a toroidal subgroup which contains Λ_p , i.e. its centralizer Z(T) is contained $Z(\Lambda_p)$. On the other hand, if $U \in Z(\Lambda_p)$ then the geodesics $s \mapsto \exp\left((\pi/2)s\Lambda_p\right) \cdot s \mapsto U \cdot \exp\left((\pi/2)s\Lambda_p\right)$, $s \in \mathbb{R}$, (with respect to a biinvariant metric on SO(2p)) h common tangent vector at s = 0, i.e. $\exp\left((\pi/2)s\Lambda_p\right)U = U \exp\left((\pi/2)s\Lambda_p\right)$ wh implies that $U \in Z(T)$. Thus $Z(\Lambda_p) = Z(T)$ and hence connected (cf. [4], C 2.8, p. 287). Finally, let

 $\mathcal{J}_{p} = \begin{bmatrix} 0_{p} & I_{p} \\ -I_{p} & 0_{p} \end{bmatrix}$

and choose $U_0 \in O(2p)$ with Ad $(U_0)\Lambda_p = \mathcal{J}_p$. Then Ad $(U_0)Z(\Lambda_p) = Z(\mathrm{Ad}(U_0)\Lambda_1 = Z(\mathcal{J}_p)$ and the fixed point set of the automorphism Ad (\mathcal{J}_p) of SO(2p) is $Z(U_p) = U(p) \subset SO(2p)$ ([4], p. 453—454) which accomplishes proof.

By Lemmas 1—3, (U, V) belongs to the isotropy subgroup at $\Phi(\sigma)$ if only if $(U, V) \in O(m+1) \times O(k)$ is conjugate to an element of $\mathcal{G}(c_1, ..., c_s, c_{s+1} + ([(m+1)/2]-t)^+)$ (under a conjugation which does not depend on (U, V)) which completes the proof of Theorem 1.

Example (Variation space of the identity of odd spheres). Consider the spaces when m=n=2r-1 odd. Then t=0 and $V_0(\mathrm{id}_{S^{2r-1}})$ reduces to a si orbit through $\Lambda_r \in so(2r)$ under the adjoint representation of O(2r) on so We claim that this orbit is a disjoint union

Ad
$$(SO(2r))\Lambda_r \cup Ad(SO(2r))\Lambda_r^-$$
,

where $\Lambda_r^- = \text{diag}(\Lambda, ..., \Lambda, -\Lambda) \in so(2r)$. Indeed, denoting $R = \text{diag}(1, ..., 1, -\xi O(2r))$, we have $R\Lambda_r R = \Lambda_r^-$ and hence if $U \in O(2r)$ such that $Ad(U)\Lambda_r = 0$, which implies $RU \in SO(2r)$, i.e. $\det U = -1$.

The Killing form of so(2r) is a negative definite Ad-invariant scalar pro on so(2r) and so it follows easily that any ray in so(2r) starting at the origin the orbit Ad $(SO(2r))\Lambda$, (or Ad $(SO(2r))\Lambda$, at most once.

Case 1: r is even. Then $\operatorname{Ad}(U_0)\Lambda_r = -\Lambda_r$ with $U_0 = \operatorname{diag}(1, -1, 1, -1, ..., 1, -1) \in SO(2r)$, i.e. the orbit $\operatorname{Ad}(SO(2r))\Lambda_r$ (and $\operatorname{Ad}(SO(2r))\Lambda_r^-$ central symmetric to the origin. Thus $V(\operatorname{id}_{S^{2r-1}}) = \mathbb{R} \cdot V_0(\operatorname{id}_{S^{2r-1}})$ is a dc cone over $\operatorname{Ad}(SO(2r))\Lambda_r = SO(2r)/U(r)$.

Case II: r is odd. It follows easily that any line through the origin cuts $f_0(\mathrm{id}_{S^{2r-1}})$ twice and that the components $\mathrm{Ad}\left(SO(2r)\right)A_r$ and $\mathrm{Ad}\left(SO(2r)\right)A_r^{-1}$ re central symmetric to each other, i.e. $V(\mathrm{id}_{S^{2r-1}})$ is again a double cone over SO(2r)/U(r).

Remark. In the special case r=2 the space $V_0(\mathrm{id}_{S^2})$ is the disjoint union if two samples of $S^2(=SO(4)/U(2))$ which was already noticed in [13].

4. The Veronese surface

Let M be a compact oriented Riemannian manifold and consider a harmonic nap $f: M \to S^n$. By the inclusion $j: S^n \to \mathbb{R}^{n+1}$ the map f becomes a vectoralued function $f: M \to \mathbb{R}^{n+1}$. Moreover, translating vectors tangent to $S^n \subset \mathbb{R}^{n+1}$ o the origin, a vector field v along $f: M \to S^n$ gives rise to a map $\theta: M \to \mathbb{R}^{n+1}$ with the property $\langle f, \theta \rangle = 0$. The following lemma characterizes the elements of $\zeta(f)$ in terms of the induced functions θ .

Lemma 4. Let v be a vector field along $f: M \to S^n$. Then $v \in K(f)$ if and only if $\Delta^M \emptyset = 2e(f)\emptyset$ holds, where $e(f) = ||f||^2/2$ denotes the energy density of f.

Proof. The covariant differentiation on S^n can be obtained from that of \mathbb{R}^{n+1} by performing the orthogonal projection to the corresponding tangent space of S^n and thus, for $X \in \mathfrak{X}(M)$, we have

$$(\nabla_X v)^{\hat{}} = X(\theta) - \langle X(\theta), f \rangle f.$$

where X acts on θ componentwise. An easy computation shows that

$$(\nabla_{Y}\nabla_{X}v)^{\hat{}}=YX(\emptyset)-\langle YX(\emptyset),f\rangle f-\langle X(\emptyset),f\rangle Y(f),\quad X,Y\in\mathfrak{X}(M),$$

$$(\nabla^2 v)^{\hat{}} = -\Delta^M \theta + \langle \Delta^M \theta, f \rangle f - \text{trace } \langle d\theta, f \rangle df$$

holds. On the other hand, we have

.e.

$$(\operatorname{trace} R(f_{\bullet}, v) f_{\bullet})^{\hat{}} = (\operatorname{trace} \langle f_{\bullet}, v \rangle f_{\bullet})^{\hat{}} - 2e(f) \theta =$$

$$= \operatorname{trace} \langle df, \theta \rangle df - 2e(f) \theta = -\operatorname{trace} \langle f, d\theta \rangle df - 2e(f) \theta.$$

The identities yield that v is a Jacobi vector field along f if and only if

(1)
$$\Delta^{M} \partial - \langle \Delta^{M} \partial, f \rangle f = 2e(f) \partial$$

is satisfied. Moreover, we have

trace
$$\langle f, \nabla v \rangle = \text{trace } \langle df, d\theta \rangle - \text{trace } \langle d\theta, f \rangle \langle df, f \rangle$$
.

By $||f||^2=1$ the second term vanishes and so equation (ii) of Section 1 is equiva to the following

(2)
$$\operatorname{trace} \langle df, d\theta \rangle = 0.$$

Further, harmonicity of f means that $\Delta^{M} f = 2e(f)f$ is valid and hence we

$$\langle \Delta^{M} \ell, f \rangle = -\langle \nabla^{2} \ell, f \rangle = -\operatorname{trace} \nabla \langle d\ell, f \rangle + \operatorname{trace} \langle d\ell, df \rangle =$$

= trace
$$\nabla \langle \ell, df \rangle$$
 + trace $\langle d\ell, df \rangle$ = 2 trace $\langle d\ell, df \rangle$ + $\langle \ell, \Delta^M f \rangle$ = 2 trace $\langle d\ell, df \rangle$

Assuming $v \in K(i)$ we obtain that $\langle \Delta^M \theta, f \rangle = 0$ and hence (1) reduces to the e tion given in the lemma. Conversely, multiplying this equation with f we $\langle \Delta^M \theta, f \rangle = 0$ and hence (1) and (2) are satisfied which accomplishes the property of the

Corollary. Let $f, f': M \to S^n$ be orthogonal harmonic maps with e(f) = e. Then the (unique) vector field v along f with ||v|| = 1 and $\exp((\pi/2)v) = f$ a harmonic variation.

Proof. By hypothesis $\theta = f_{e/2} = f'$ and harmonicity of f' yields $\Delta' = 2e(f')\theta = 2e(f)\theta$. Applying the lemma above we obtain that $v \in K(f)$ which complishes the proof.

Remark. According to a result of [11] a vector field v along f is a harn variation if and only if v is a Jacobi field along f and $e(f_i) = e(f)$ holds for $i \in \mathbb{R}$. Hence there is a one-to-one correspondence between the harmonic variation of $V_0(f)$ and the orthogonal pairs of harmonic maps $f, f' : M \to S^n$ with e(f) = f

Now we turn to the variation space of the Veronese surface. Conside eigenspace \mathcal{H}_1 of the Laplacian $\Delta = \Delta^{5^2}$ of the Euclidean sphere S^2 correspond to the (second) eigenvalue $\lambda_2 = 6$ [1]. An element of \mathcal{H}_2 is the restriction (to of a homogeneous polynomial $p: \mathbb{R}^3 \to \mathbb{R}$ of degree 2 which has the form

$$p = \sum_{k=1}^{3} a_k \varphi_k + 2 \sum_{i < j} b_{ij} \varphi_{ij},$$

where $a_k, b_{ij} \in \mathbb{R}$ with $\sum_{k=1}^{2} a_k = 0$ and $\varphi_k, \varphi_{ij}, k = 1, 2, 3, 1 \le i < j \le 3$, are so on S^2 defined by $\varphi_k(x) = x_k^2$, $\varphi_{ij}(x) = x_i x_j$, $x = (x_1, x_2, x_3) \in S^2$. (cf. [1] p. in particular dim $\mathcal{X}_2 = 5$.

Integration over S^2 defines a Euclidean scalar product on \mathcal{X}_2 . Der $I = \|\varphi_k\|^2$ and $J = \|\varphi_{ij}\|^2$, the Veronese surface $f: S^2 \to S^4$ is defined by

$$f(x_1, x_2, x_3) = \frac{N}{I - J} \sum_{k=1}^{3} \left(x_k^3 - \frac{1}{3}\right) \varphi_k + \frac{2N}{J} \sum_{i < j} x_i x_j \varphi_{ij}, \quad (x_1, x_2, x_3) \in S^3,$$

where N>0 is a normalizing factor given by the condition ||f||=1. Then full and homothetic [1]. It is well-known [1] that f factors through the can projection $\pi: S^2 \to \mathbb{R}P^2$ yielding an embedding of $\mathbb{R}P^2$ into S^4 .

Lemma 5. For the Veronese surface $f: S^2 \to S^4$, if $v \in K(f)$ then $\theta: S^2 \to \mathcal{H}_2$ is the decomposition

$$0 = \sum_{k=1}^{3} a_k \varphi_k + 2 \sum_{i < j} b_{ij} \varphi_{ij},$$

here a_k , b_{ij} , k = 1, 3, $1 \le i < j \le 3$, are scalars on S^2 determined by the formulas $a_1(x) = -\varepsilon x_2^2 + \varepsilon x_3^2 + 2\alpha_1 x_1 x_2 + 2\beta_1 x_1 x_3 - 2(\alpha_2 + \beta_3) x_2 x_3$, $a_2(x) = \varepsilon x_1^2 - \varepsilon x_3^2 + 2\beta_2 x_1 x_2 - 2(\beta_1 + \alpha_3) x_1 x_3 + 2\alpha_2 x_2 x_3$, $a_3(x) = -\varepsilon x_1^2 + \varepsilon x_2^2 - 2(\alpha_1 + \beta_2) x_1 x_2 + 2\alpha_3 x_1 x_3 + 2\beta_3 x_2 x_3$,

$$b_{18}(x) = -\frac{\alpha_1}{2} x_1^2 - \frac{\beta_2}{2} x_2^2 + \frac{\alpha_1 + \beta_3}{2} x_3^2 - 2\gamma_1 x_1 x_3 + 2\gamma_2 x_3 x_3,$$

$$b_{23}(x) = \frac{\alpha_2 + \beta_3}{2} x_1^2 - \frac{\alpha_2}{2} x_2^2 - \frac{\beta_3}{2} x_3^2 - 2\gamma_2 x_1 x_2 + 2\gamma_3 x_1 x_3,$$

$$b_{13}(x) = -\frac{\beta_1}{2} x_1^2 + \frac{\alpha_3 + \beta_1}{2} x_3^2 - \frac{\alpha_3}{2} x_3^2 + 2\gamma_1 x_1 x_2 - 2\gamma_2 x_3 x_3,$$

 $\kappa = (x_1, x_2, x_3) \in S^2$, ε , α_k , β_k , $\gamma_k \in \mathbb{R}$, k = 1, 2, 3. In particular, dim K(f) = 10.

Proof. As θ maps into \mathcal{H}_2 we have the decomposition of θ as above with $\sum_{k=1}^{3} a_k = 0$. On the other hand, Lemma 4 implies that

$$0 = \Delta \theta - 6\theta = \sum_{k=1}^{3} (\Delta a_k - 6a_k) \varphi_k + 2 \sum_{i < j} (\Delta b_{ij} - 6b_{ij}) \varphi_{ij}$$

and hence orthogonality of the polynomials φ_{ij} , i < j, and the relations $\langle \varphi_k, \varphi_{ij} \rangle = 0$, $\langle \varphi_k, \varphi_r \rangle = J + \delta_{kr}(I - J)$, k, r = 1, 2, 3, i < j, yield that the scalars $a_k, b_{ij}, k = 1, 2, 3, i < j$, belong to \mathcal{X}_2 . Thus

$$a_r = \sum_{k=1}^{3} a_k^r \varphi_k + 2 \sum_{i < j} b_{ij}^r \varphi_{ij}, \quad r = 1, 2, 3,$$

and

$$b_{pq} = \sum_{k=1}^{3} a_k^{qq} \varphi_k + 2 \sum_{i < j} b_{ij}^{pq} \varphi_{ij}, \quad 1 \le p < q \le 3,$$

where $a_k^r, b_{ij}^r, a_k^{pq}, b_{ij}^{pq} \in \mathbb{R}$ such that

(C₁)
$$\sum_{k=1}^{3} a_{k}^{r} = 0$$
 and $\sum_{k=1}^{3} a_{k}^{pq} = 0$, $r = 1, 2, 3, 1 \le p < q \le 3$,

hold. Moreover, from the equation $\sum_{k=1}^{3} a_k = 0$ we obtain

(C₂)
$$\sum_{r=1}^{3} a_k^r = 0$$
 and $\sum_{r=1}^{3} b_{ij}^r = 0$.

Finally, the orthogonality relations for φ_k and φ_{ij} above imply that the con $\langle f, \theta \rangle = 0$ is equivalent to the equation

$$\sum_{k=1}^{3} a_k x_k^2 + 4 \sum_{i < j} b_{ij} x_i x_j = 0, \ (x_1, x_2, x_3) \in S^2.$$

Substituting the explicit expressions of a_k and b_{tt} we get

$$\sum_{k=1}^{3} \sum_{r=1}^{3} a_{k}^{r} \varphi_{k} \varphi_{r} + 2 \sum_{i < j} \sum_{r=1}^{3} \left(b_{ij}^{r} + 2 a_{r}^{ij} \right) \varphi_{r} \varphi_{ij} + 8 \sum_{i < j} \sum_{p < q} b_{ij}^{pq} \varphi_{ij} \varphi_{pq} = 0.$$

A straightforward computation, determining the coefficients of the fourth homogeneous polynomial on the left hand side, shows that this equation is sat if and only if the following relations hold:

$$(C_3)$$
 $a_k^k = 0$ for $k = 1, 2, 3,$

$$(C_4) \quad b_{12}^1 + 2a_{1}^{12} = b_{12}^2 + 2a_{2}^{12} = b_{13}^1 + 2a_{1}^{13} = b_{13}^3 + 2a_{3}^{13} = b_{23}^2 + 2a_{23}^{23} = b_{23}^3 + 2a_{3}^{23} = 0,$$

$$(C_s)$$
 $a_i^j + a_j^i + 8b_{ij}^{ij} = 0$ for $1 \le i < j \le 3$.

(C_e) $b_{23}^1 + 2a_1^{23} + 4b_{13}^{13} + 4b_{13}^{13} = b_{13}^2 + 2a_2^{13} + 4b_{12}^{23} + 4b_{12}^{23} = b_{12}^3 + 2a_3^{12} + 4b_{13}^{23} + 4b_{13}^{23} = b_{13}^3 + 4b_{13}^{23} + 4b_{13}^{23} + 4b_{13}^{23} = b_{13}^3 + 4b_{13}^{23} + 4b_{13}^{23$

$$A = \begin{bmatrix} 0 & \varepsilon & -\varepsilon \\ -\varepsilon & 0 & \varepsilon \\ \varepsilon & -\varepsilon & 0 \end{bmatrix}$$

and consequently, by (C_b) , $b_{ij}^{ij} = 0$ for i < j. Introducing the new (independent variables

$$\begin{array}{lll}
 & \alpha_1 = b_{12}^1, \ \alpha_2 = b_{23}^2, \ \alpha_3 = b_{13}^3, \\
 & \beta_1 = b_{13}^1, \ \beta_2 = b_{12}^2, \ \beta_3 = b_{23}^2, \\
 & \gamma_1 = b_{13}^{13}, \ \gamma_2 = b_{23}^{12}, \ \gamma_3 = b_{13}^{23}, \\
\end{array}$$

we see that all the remaining coefficients are expressible in terms of the varia $\{\varepsilon, \alpha_k, \beta_k, \gamma_k \mid k=1, 2, 3\}$ and a straightforward computation leads to the coefficing given in Lemma 5.

Our last result asserts that the Veronese surface is rigid. More precisely, we I the following

Theorem 2. For the Veronese surface $f: S^2 \rightarrow S^4$ the variation space V is zero.

Proof. Using the notations of Lemma 5 we parametrize K(f) with variables $\{\varepsilon, \alpha_k, \beta_k, \gamma_k \mid k = 1, 2, 3\}$. Putting $v \in K(f)$ we have

$$\theta = \sum_{k=1}^{3} a_k \varphi_k + 2 \sum_{i < j} b_{ij} \varphi_{ij},$$

where the coefficients a_k , b_{ij} , $k=1, 2, 3, 1 \le i < j \le 3$, are given in Lemma 5.

Note that the parametrization of K(f) is chosen in such a way as the cyclic permutation $\pi = (123)$ of the indices on the right hand sides will permute the scalars a_1 , a_2 , a_3 and b_{12} , b_{23} , b_{13} cyclically. Now suppose, on the contrary, that $V(f) \neq \{0\}$, i.e. we may choose $v \in V(f)$ with $||v||^2 = 4f$. Then we have

$$4J = \|v\|^2 = \sum_{k=1}^3 \sum_{r=1}^3 a_k a_r \langle \varphi_k, \varphi_r \rangle + 4J \sum_{i < j} b_{ij}^2 = (I - J) \sum_{k=1}^3 a_k^2 + 4J \sum_{i < j} b_{ij}^2,$$

or equivalently

(3)
$$1 = \frac{1}{2} \sum_{k=1}^{3} a_k^2 + \sum_{i < j} b_{ij}^2$$

on S^2 , where we used the equality $\frac{I-J}{AI} = \frac{1}{2}$ which can be obtained by integrating the polynomials φ_3^2 and φ_{33}^2 on S^2 . Thus

$$(x_1^2 + x_3^2 + x_3^2)^2 = \frac{1}{2} \sum_{k=1}^3 a_k(x_1, x_2, x_3)^2 + \sum_{i < j} b_{ij}(x_1, x_2, x_3)^2$$

is satisfied for all $(x_1, x_3, x_3) \in \mathbb{R}^3$. By computing the coefficients of the fourth order homogeneous polynomial on the right hand side we obtain a system of 15 quadratic equations in which the first 5 are given as follows

- (i) $4\varepsilon^2 + \alpha_1^2 + \beta_1^2 + (\alpha_2 + \beta_3)^2 = 4$,
- (ii) $\varepsilon(\alpha_1+2\beta_2)-\beta_1\gamma_1-(\alpha_2+\beta_2)\gamma_2=0$,
- (iii) $-\varepsilon(\beta_1+2\alpha_2)+\alpha_1\gamma_1+(\alpha_2+\beta_2)\gamma_2=0$,
- (iv) $\varepsilon(\alpha_3 \beta_3) + 2(\alpha_1\beta_1 \beta_2(\beta_1 + \alpha_3) \alpha_3(\alpha_1 + \beta_2)) \alpha_1\gamma_2 + \beta_1\gamma_3 4\gamma_2\gamma_3 = 0$,

 $(v) -2\varepsilon^2 + 4(\alpha_1^2 + \beta_2^2 + (\alpha_1 + \beta_2)^2) + \alpha_1\beta_2 - \beta_1(\beta_1 + \alpha_2) - \alpha_2(\alpha_2 + \beta_2) + 8(\gamma_1^2 + \gamma_2^2) = 4,$ and, the equation (3) being invariant under the cyclic permutation π =(123) of the indices, the last 10 equations are obtained from (i)—(v) by performing the index permutations π and π^{2} . Denote the equations of the permuted systems by $(i)_{n}$ — $(v)_{n}$ and $(i)_{gr}$ — $(v)_{gs}$, respectively. Our purpose is to show that these equations have no solution. To do this, first denote by s the symmetric polynomial given by s(x, y) = $=x^2+xy+y^2$, x, y $\in \mathbb{R}$. Then (v) can be written as

$$-2\varepsilon^{2}+8s(\alpha_{1},\beta_{2})+(\alpha_{1}\beta_{2}-\beta_{1}^{2}-\beta_{1}\alpha_{3}-\alpha_{2}^{2}-\alpha_{2}\beta_{3})+8(\gamma_{1}^{2}+\gamma_{2}^{2})=4.$$

Performing the index permutations π and π^2 and adding these three equations we get

$$-6\varepsilon^2 + 7(s(\alpha_1, \beta_2) + s(\alpha_2, \beta_3) + s(\alpha_3, \beta_1)) + 16(\gamma_1^3 + \gamma_2^2 + \gamma_3^3) = 12.$$

In a similar way, from (i)—(i),—(i), it follows that

$$12s^2 + 2(s(\alpha_1, \beta_2) + s(\alpha_2, \beta_3) + s(\alpha_3, \beta_1)) = 12,$$

i.e. eliminating the terms containing the polynomial s we have

(4)
$$24(1-\varepsilon^2)+8(\gamma_1^2+\gamma_2^2+\gamma_3^2)=9.$$

On the other hand, fixing γ_i , i=1,2,3, the equations (ii)—(ii)_g—(iii)_g, and (i (iii)_g—(iii)_g, form a linear system for the variables α_i , β_i , i=1,2,3. Denotin $M(\gamma_1, \gamma_2, \gamma_3) \in M(6,6)$ its matrix, we compute $\det M(\gamma_1, \gamma_2, \gamma_3)$. For ξ , η , define

$$S(\xi, \eta, \zeta) = \begin{bmatrix} \varepsilon & 2\varepsilon & 0 & -\xi & -\eta & -\eta \\ -2\varepsilon & -\varepsilon & \xi & \xi & \eta & 0 \\ -\xi & -\xi & \varepsilon & 2\varepsilon & 0 & -\zeta \\ \xi & 0 & -2\varepsilon & -\varepsilon & \zeta & \zeta \\ 0 & -\eta & -\zeta & -\zeta & \varepsilon & 2\varepsilon \\ \eta & \eta & \zeta & 0 & -2\varepsilon & -\varepsilon \end{bmatrix}.$$

Permuting the rows and the coloumns of $M(\gamma_1, \gamma_2, \gamma_3)$ by the permutation we obtain $S(\gamma_1, \gamma_2, \gamma_3)$ and consequently $\det M(\gamma_1, \gamma_2, \gamma_3) = \det S(\gamma_1, \gamma_2, \gamma_3)$ similarly, by performing (135462) and (132465) on the rows and coloumns $M(\gamma_1, \gamma_2, \gamma_3)$ we get $S(\gamma_2, \gamma_2, \gamma_1)$ and $S(\gamma_3, \gamma_1, \gamma_2)$ i.e. $\det S(\gamma_1, \gamma_2, \gamma_2, \gamma_3) = \det S(\gamma_3, \gamma_2, \gamma_1) = \det S(\gamma_3, \gamma_1, \gamma_2)$. Thus, it is enough to compute $\det S(\xi, \eta, \zeta)$ to do this, let $S(\xi, \eta, \xi)$ have the decomposition

$$S(\xi, \eta, \zeta) = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where $A \in M(4, 4)$. The matrix A is centroskew and so by using a result of a direct computation shows that det $A = (3\epsilon^2 - \xi^2)^2$. Assuming $3\epsilon^2 \neq \xi^2$ we have

$$\det S(\xi, \eta, \zeta) = \det A \det (D - CA^{-1}B) = 3\varepsilon^2 (3\varepsilon^2 - (\xi^2 + \eta^2 + \zeta^2))^2.$$

Suppose now that $\gamma_1^2 = \gamma_2^2 = \gamma_3^2 = 3\varepsilon^2$. Then equation (4) implies that $15 + 8\varepsilon^2$ which is impossible. Hence there exists $i \in \{1, 2, 3\}$ such that $\gamma_i \neq 3\varepsilon^2$. Then, the above, det $M(\gamma_1, \gamma_2, \gamma_3) = 3\varepsilon^2(3\varepsilon^2 - (\gamma_1^2 + \gamma_2^3 + \gamma_3^3))^2$. Further, det $M(\gamma_1, \gamma_2, \gamma_3)$ since otherwise $\gamma_1^2 + \gamma_2^3 + \gamma_3^3 = 3\varepsilon^2$ which contradicts to (4). Thus the linear systim question has only trivial solution $\alpha_1 = \alpha_2 = \alpha_3 = \beta_1 = \beta_2 = \beta_3 = 0$. Then equation $(iv)_{-}(iv)_{\pi}$ imply that two of the numbers $\gamma_1, \gamma_2, \gamma_3$ vanish. By equation $(v)_{-}(v)_{\pi}$ we obtain $\varepsilon = 0$ which again contradicts to (4).

References

- [1] M. BERGER, P. GAUDUCHON, E. MAZET, Le spectre d'une variété Riemannienne, Lecture Notes in Math. 194, Springer-Verlag (Berlin, 1971).
- [2] A. R. Collar, On centrosymmetric and centroskew matrices, Quart. J. Mech. Appl. Math., 15 (1962), 265—282.
- [3] J. EELLS, L. LEMAIRE, A report on harmonic maps, Bull. London Math. Soc., 10 (1978), 1-68.
- [4] S. HELGASON, Differential geometry, Lie groups and symmetric spaces, Academic Press (New York, Toronto, London, 1978).
- [5] S. KOBAYASHI, Transformation groups in differential geometry, Ergebnisse der Math., Band 70, Springer-Verlag (Berlin, 1972).
- [6] S. KOBAYASHI, K. NOMIZU, Foundations of differential geometry, Vol. I, Interscience (New York, 1963).
- [7] C. LANCZOS, Linear systems in self-adjoint form, Amer. Math. Monthly, 65 (1958), 665-679.
- [8] H. Schwerdtfeger, Introduction to linear algebra and the theory of matrices, Noordhoff (Gropingen, 1950).
- [9] J. SIMONS, Minimal varieties in Riemannian manifolds, Ann. of Math., 88 (1968), 62-105.
- [10] G. TOTH, On variations of harmonic maps into spaces of constant curvature, Annali di Mat. (IV), 128 (1980), 389-399.
- [11] G. Тотн, On harmonic maps into locally symmetric Riemannian manifolds, Symposia Math. Acad. Press (to appear).
- [12] G. Тотн, Construction des applications harmoniques non rigides d'un tore dans la sphère,
 Annals of Global Analysis and Geometry, to appear.
- [13] G. TOTH, On rigidity of harmonic maps into spheres, J. London Math. Soc., to appear.

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES REALTANODA U. 13—15 1003 BUDAPEST. HUNGARY