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On variation spaces of harmonic maps into spheres

A LEE and G. TOTH

1. Introduction

Given a harmonic map f: M—~S" [3] of a compact oriented Riemannian
manifold M into the Euclidean n-sphere S*, n=2, a vector field v along f, ie.
a section of the pull-back bundle & =/°(T(S"), gives rise to a (one-parameter,
geodesic) variation f; = expo(): M—~S", t€R, where exp: T(S") - S§° is the
exponential map. The element v€EC=(F) is said to be a harmonic variation if
fi is harmonic for all t€R and the set of all harmonic variations o (or the variation
space) of f is denoted by V(f)cC=(F). Then [I1] veV(f) if and only if
lo] =const. and

(i) V*o=trace R(f:, v)fs (i.e. v is a Jacobi field along f [3]),

(ii) trace (fi, Vv)=0,
where (,) and V are the induced metric and connection of the Ricmannian-
connected bundle F@A*(T*(M)), V*=traceVoV [9), R is the curvature
tensor of S* and the differential f. of f is considered as a section of F @ T*(M).
Denote by K(f) the linear space of all vector fields v along f satisfying (i) and (ii).
The equation (i) being (strongly) elliptic [9] dim K(f)<= and V(f)={veK(/)|
|1v] =const.)= K(f) is a subset with the obvious property RVo(f)=V (/) where
VoN={veK(N|lIi=1}.

The purpose of this paper is to give a geometric description of the variation
space ¥ (i)c K(i) (=R") of the canonical inclusion i:S™*-~S", where N=
=m{m+ 1))2+(n—m)Ym+1). In Section 2 we collect the necessary tools from matrix
theory used in the sequel, especially we describe the singular value decomposition
of rectangular matrices (see e.g. [7)). In Section 3 the problem of determining V(i)
is reduced to the geometric characterization of an (algebraic) set of matrices. Then
the singular value decomposition of these matrices are cxploited to get a description
of V(i)cK(i) as a set of orbits (under a linear Lie group action) which contains
a (twisted) simplex as a global section (Theorem 1). In particular, we prove that
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V(idgwe-1)s reN, is the double cone over the irreducible Hermitian symmet: |
space SO(2r)/U(r)(=Vo(ids.,-,)). (Note that V(idgw)=0 because 2(s?)=2 (1l

In Section 4 we first give an alternative description of the linear space K(f)-

particular, we obtain that there is a one-to-on¢ correspondence between the elemen

of Vo(f) and the orthogonal pairs f. M-8 of harmonic maps with the san
energy density e(NH=e(fH) {31 Second, as an cxample, we determine K(f) for t
Veronese surface [ : §t~S* and prove that K(f)=Kudg) and V(f)=V(ids)=
hold.

Throughout this paper all manifolds. maps, bundles. etc. will be smooth, i.
of class C=. The report {3) is our general reference for harmonic maps though v
adopt the sign conventions of [6].

We thank Professor Eells for his valuable suggestions and encourageme
during the preparation of this work.

2. Preliminaries from matrix theory

First we fix som¢ notations used in the sequel. Denote by M(p,q) the lin
space of (pX9q) matrices and, as usual, let 7, and O the unit and zero elem¢
of M(p,p). A matrix AEM(p. Q) with entries aj. izl Py JEL o @
said to be (rectangular) diagonal if

-’{o, foigj i=laapi=hoo
ay=Ag, if i=joi=1.mina

holds. We write A=diag (61, -+ 00 with d=min(p.q) and, in case f
we omit the indices p and ¢.

The singular value decomposition of rectangular matrices is given in the fo
ing theorem. (For the proof, see M)

Theorem A. For any matrix BeM(p,q) there exist orthogonal ma
veo(p) ard UEO(@) such that

yTBU = diag (d1s -+ 0%
with 6,20, i=1, ..., d=min(p, q)- The matrices V, U and the values d
determined by the relations:
(A, VBBV = diag (63, .- Ods -0 o3
(A) UTBTBU= diag (3, -+ Ods o> a?),
(Ay) BU = v diag (014 -+ )5,

where 6,=0 for d<i=max(p, 9)-
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Remark. The numbers ¢,=0, i=1,...,d, are called the singular values of
8. Clearly, ¥ and U can always be chosen such that ¢,=0y=...=g, holds.
Denote by A,€s50(2r) the skew-symmetric matrix

A,=di88[[__? (l, [-(1) ;])

ind put A,=4. In the next theorem we collect some properties of skew-symmetric
natrices (cf. [8] pp. 151, 231).

Theorem B. For any matrix J€so(p) we have
(B,) rank f=2r=p;

(By) The 2r nonzero eigenvalues of S appear in pairs Ay ,=Ay=2Y—1lg,
vith 0,>0, i=1, ..., r, while zero is an eigenvalue with multiplicity p—2r;

(By) There exists U€O(p) such that s
1) UTJU = diag (0,4, 0,4, ..., 0,4)
w equivalently
diag (8,4, ..., 8,,s4), if p is even,
T £
e U= {diag ©, 8,4, ..., 8;,mA), if p is odd,

.*”' 0,=...=8u,-,,m=0 and 8[(,_|,),,,,,=6,, i= l. ooy Py
(Bo) With the same matrix U€O(p) we have

diag (81 /5, ..., 833 1y) if p is even,
diag (0, 83/,, ..., 88,1y, if p is odd,

n particular, the nonzero singular values of § have even multiplicities.

2) vr-smu={

3. Variation space of the canonical inclusion i: $® - S*

Let i:S™~S" be the canonical inclusion and let W!, ..., W* k=n—m,
Jenote the system of orthonormal parallel sections of the normal bundle of i defined
7y the standard base vectors e, ., ..., €,4,€ R™*2,

According to a result of [11) véK(i) if and only if the tangential part ¢ of
* is a Killing vector field on $™ and there exist vectors by, ..., b,¢ R"*+! such that
he orthogonal decomposition

k
vx=,x+ Z(b},X)W{, XES-.
J=1

8 valid. Hence the linear map ¥': K(i)~so(m+1)X M (k, m+1) defined by ¥(v)=
=(f. B), v€K (i), where ¥ is the tangential part of o and BEM(k, m+1)
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consists of the row vectors b,, ..., b€ R™+! occurring in the decompositio
v above, is a linear isomorphism. In what follows, we identify K (i)
so(m+1)XM(k,m+1) via ¥. Further, V(i)=RVy(i)cK(i). where V,
={v€K()|Ivl=1). Thus, for v=(F, B)EV,(i). we have

k
T="0]'=101+ 3 (b, x)* = (— #2x, x)+ (B Bx, x), x€S™,
/=
ie.
Vo(i) = (S, B)so(m+1)X M(k, m+1)| - 2+ BB = I,,,).

The objective of this section is to give a geometric description of the set ¥y
CK(i). Before stating our main theorem we introduce some notations. For the g
positive integers m and n, m=n, set

) {min ((m+1)/2, [k/2]), if m+1 is even,
~ Umin (m/2, {(k=1)/2]), if m+1 is odd,
where k=n-—m, and define
4,={(01,....0)R" |1 =0, =...2 0, = 0).
So 4,cR' isa (linear) simplex which reduces to a point if ¢ =0. (Note that ¢z
and equality holds if and only if m=n is even, in which case Vo(i)=0 [11] anc
put 4_,=0.)

A linear representation of the Lie group O(m+1)X0(k) on the vector s
K(i)=so(m+1)XM(k, m+1) is given by

W, V). (s, B) = WrUT, vBU")

(U, V)EO(m+1)XO(k), (#, B)eso(m+1)X M(k, m+ 1). Clearly, the subset ¥,(
cK(i) is invariant, i.e. V,o(i) is the union of orbits crossing V,o(i). Finally
introduce certain subgroups of O(m+1)X0(k) which will be the isotropy

groups at points of V,(i). For given nonnegative integers ay, by, ¢y, C4, ...,
with m+1=a,+2¢,+... 4+ 2¢,,, and k=ay+2c,+...+2¢c,+ b, define the subgrc

g(q, vesy cl#l) = {(Ao, Cl' ceey C|+l; Ao, Cl' ceey C,‘ Bo)EO(m+ l)x0(k)|
A€ 0 (ay), By€O(by), CieU(c), i=1, o)

where Uf(c,) is considered as a subgroup of SO(2c)) via the canonical embed:
U(e)~SO0(Q2¢), i=1, ..., s+1. The isotropy type i.e. the set of all conjugacy cla
of a subgroup ¥cO(m+1)XO0(k) is denoted by (¥). The main result of
section is the following:

Theorem 1. There exists an embedding ®:A,~K(i) such thatr (4,
a global section of the invariant subset Vi) (i.e. (4, ) V(i) and any orbii
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i) cuts ®(4,) at exactly one point). Moreaver, for 6=(0g --.s Tas O1s ++» T1s w20
1e1s -e1 Op41)E Ay, where 1=0y>0,>...>0,>0,,, =0 and o, occurs c; times in
,i=0, ...,s+ 1, the isotropy type of the orbit through ®(a) is (F(crs s s Cann t
-([(m+ 1)/2)—1)*) (* = positive part) or equivalently this orbit has the form

(o(m +1)XOK)D(c1s -oes €as c,“+([m+1)/2]]—t)*‘).

n particular, for each open face 4 of the simplex 4, the orbits through ®(A) have
he same type.

Remarks 1. Each orbit consists of 1,2 or 4 components. More precisely,
he subgroups %(cy, ... €,+1)CSO(m+ 1)x SO (k) being connected, the orbit
O(m+1)X0(k))/%(c1, ...,c,,c,ﬂ+([(m+l)/2]-t)+) has N components, where

1, if k>0 and aogb, >0,
N=12, if k>0, agby,=0 and ao+bo=>0 orif k=0,
4, if k > 0 a“d Qg = bn = 0.

2. By a result of [13] for any locally rigid harmonic embedding f: M-S
we have V(f)=V(i), where i: S§™—~S" is the inclusion and m is the dimension
of the least totally geodesic submanifold of S containing the image of f. Thus
Theorem 1 gives a description of the variation space of all locally rigid harmonic
embeddings.

The proof of Theorem 1 is broken up into a few lemmas. Let (f, B)eV, (i)
be fixed. Then, by Theorem B, there exists U€O(m+1) such that UTSU and
UT(— #4)U have the form (1°) and (2), resp., with

0 E al ";“.-. .5.-; 3“,,”1),,].
Thus, by B'B=/,.,+J* we obtain

UTBTBU = {diag (a{l,; ...,af(.:,,,,,l,). .if m+1 .is even,

diag (1, ot/s, vees Glmenym i if m+1 is odd,
where ol=1-4%, i=1,....[(m+1)2). Clearly, 1=0l=... Z0fmsym=0 is satis-
fied. Then the values of, i=1,...[(m+1)/2}, oceurring twice in BTB, are the
cigenvalues of the positive semidefinite matrix BYB. The nonzero eigenvalues of
BB and BBT being the same, the system of cigenvalues of BBTe€M(k, k) can be
obtained from that of BTBeM(m+1,m+1) by supplementing or omitting
Ye—~(m+1)| zeros according as k=m+1 or k<m+1. In the latter case, for some
index 1,=([k/2], 0,=0, i>1,, must be valid. The determination of the minimal
value of 1, can be done by making distinction according to the parity of k. Hence

»
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we have
UTBTBU =

(diag (011, ..., 6%asyaly) for k= m+1, m+1 even,

diag(ai/y, ..., 0}2315.0,41-;) for k even, k <m+1, m+1 even,

diag (a1/y, ..., 60 2y /3. O uy-aqaysy) fOr k odd, k < m+1, m+1 even,
diag(l,01/s. ... Ol msnyny/y) for Kk = m+1, m+1 odd,

diag (1, 01/y, ..., 054 1) 2s Ons1-a) for k odd, k < m+1, m+1 odd,
diag (1, a/,, ceor Ofa-1y23fa Om—sta-1y2y) for k even, k < m+1, m+1 ¢

]

A casc-by-case verification shows that the minimal value of 1, is the numt
defined before Theorem 1. Thus we obtain

diag (6¥/,, ..., 0714, 0,41-4), if m+1 is even,

TRTRI =
AR {diag (L6l ...,000;,0._g), if m+1 is odd,
and consequently (1°) has the form

diag (6,4, ..., 8,4, Ajmer-ayp), if m+1 is even,
diag (0, 8, 4, ..., 8,4, A(,.-a)/a)v if m+1 is odd.

Lemma l. Let (f,B)cK(i). Then (f,B)eV,(i) if and only if there «
(U, V)EO(m+1)XO(k) such that (f, B)=(Ug(8)UT, VB(o)UT, where

UT]U={

diag (814, ..., 8,4, A(ps1-gys) if m+1, is even
diag (0, 8,4, ..., 8,4, Am-gy), if m+1, is odd,
diag (0,5, ..., 0 1y, 040 )0 %Y, if m+1, is even,
diag(l,0,/1y, ..., 0,13, 0y 1%, if m+1, is odd,

with o€d4,, 8,=V1+a},i=1,...,1, and d=min (m+1, k).

Proof. If (f, B)EV,(i) then there exists Uc¢O(m+1) such that UTBV
=B(0)"B(6) and UTJU=g(8) with 0=8=. S8 us1yy The diag
entries of UTBTBU are the eigenvalues of B™B and hence, by Theorem A,
exists ¥€O(k) such that the pair (U, V) perform the singular value decompos
of B, ie. we have VTBU=B(o). Thus, (UTSU, VTBU)=(7(8), B(0d)), c
The converse being obvious the proof is finished.

s@={

B(o) = {

By the lemma above the map @:4,-K(i), ?(5)=(F5(3), B(9)), o€ 4,,
embedding with (O(m+1)XO(k))- #(4,)=V,(i). Moreover, the eigenvaluc
J and the singular values of B are invariants characterizing the orbit thr
(., B) uniquely. Thus #(d4,) is a global section on V(i) which accomplishe
proof of the first statement of Theorem 1.
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Let =(00, --:s Og» Trs +e+s O1s oos Tabrr oo0s 0,,1)€4, be fixed with 1=0p>
3,>...>0,>0,,;=0 and g, occurs ¢ times in @, i=0,...,s+1. It remains
compute the isotropy type of the orbit through @®(g). The isotropy subgroup

®(a) consists of pairs (U, V) such that U#(8)=J(8)U and VB(o)=B(0) U.
est we study the second relation. Consider B(o)eM(k,m+1) asa matrix

o=

here Z=diag (aol,. 0yly. s - or Galye YeM(r, r), r=a.,+2i' Ci
1 [} =1

{2co, if m+1 is even,
80 = 12¢,+1, if m+1 is odd, R

nd 0 on the right lower corner is of size (k—r)X(m+1—r).

Lemma?2. Let (U,V)EO(m+ 1)XO(k) such that VB(0)=B(o)U holds.
"hen we have V =diag(A4y,Ch, -y CysBo) and U =diag (4, Cys s Cyps Cana)s
shere A€ O(ay), Bo€O(k—r), C€0Q2c), i=) ... 5 C, 1 €0(m+1-r).

Proof. Let VeO(k) and UeO(m+1) have the partitioned forms (conformal
o that of B(g) above):

. [V,R] iU [U,P
=ls 5 ¥ "7l c.F

where Vo, UoE M(r, 1), B M(k—r, k—r), Com€M(m+l—r,m+1-r). (The size
of C,., can be expressed as m+1—=r=2¢,,,+2[(m+1)2]—1)*). Substituting
these into the equations VB(g)=B(a)U, yv¥=1,, UUT=l,,, we obtain R=0,
S =0, V,€0(r), BocO(k—r) and P=0, 0=0, Us,eO0(r), C, . €0(m+1-7). Thus
the first equation reduces to VoZ=2ZU,, ie. by det Z=0}"...07>0, Ve=ZU,Z™\
Substituting this into the orthogonality relation V7 V=1, we get U,B*=2'Up
which gives for Up=(Cyy), Coo€ M(ay, a5), Cw€M(2c,, ay), Co£ M(ay, 2c)), Cy€
EM(2c, 2¢), i, j =1 .0 5 the relations C,;=0, if i=j. Hence, using the nota-
tions Ceo=Ao and C,;=C, i=l,..,s we obtain U,=diag (4y, C;, .-, Cy)
with 4,5 0(a,). C,£0(2¢)), i=1,...,s As U, and Z commute we have Vo=U,
which accomplishes the proof.

Consider now the second equation UJ(8)=JS(&)U, where U has the form
given in Lemma 2. Clearly, this equation is satisfied if and only if C€Z(4.),
I=1,..., 5 Css1€Z(Ams1-np)» Where Z(A,) denotes the centralizer of 4,
in 0(2p).
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Lemma 3. The centralizer Z(A)CO(2p) is connected and there exi
U,£0(2p) such that Ad (U)Z(A4,)=U(p)cSO(2p), where Ad dcnotes the adjc
representation of O(2p).

Proof. Itiswell-known that Z(4,)cSO(2p) (cf. (8], Ch. 1V. §29, p. 248). F
we prove that Z(A,)=SO0(2p) is connccted. Clearly, exp ((r/2)A,)=A,, wh
exp: so(2p)~SO(2p) is the exponential map. Hence T =exp (RA,)< SO(2p)
a toroidal subgroup which contains 4,. i.e. its centralizer Z(T) is contained
Z(A,). On the other hand, if U€Z(4,) then the geodesics s—exp ((7/2)s4,)-
s—U - exp ((n/2)s4,), s€R, (with respect to a biinvariant metric on SO(2p)) h
common tangent vector at s=0, i.e. exp((n/2)s4,)U=U exp ((r/2)s4,) wh
implies that U€Z(T). Thus Z(4,)=Z(T) and hence connected (cf. [4], C
2.8. p. 287). Finally, let

0, 7/
’ =[ P »
’ =1, 0,
and choose U,€0(2p) with Ad (Uy)4,=J,. Then Ad (Uo)Z(A,)=Z(Ad (Ug)4,
=Z(J,) and the fixed point set of the automorphism Ad () of SO(2p) is Z(
It is known that Z(%,)=U(p)< SO(2p) ({4), p. 453—454) which accomplishes
proof,

By Lemmas 1—3, (U, V) belongs to the isotropy subgroup at ®(a) if
only if (U, ¥)€O(m+1)XO(k) is conjugate to an element of F(cy, -.-s €5y 44
+({(m+1)/21-1)*) (under a conjugation which does not depend on (U,
which completes the proof of Theorem 1.

Example (Variation space of the identity of odd spheres). Consider the sp«
case when m=n=2r—1 odd. Then t=0 and V,(ids,.,) reduces to a si
orbit through A,€s0(2r) under the adjoint representation of O(2r) on so
We claim that this orbit is a disjoint union

Ad (SO (2r))4,UAd (SO2n) A7,

where A =diag (4, ..., A, — A)€so(2r). Indeed, denoting R=diag (1, ..., I, -
€0(2r), we have RAR=A; and hence if UeO(2r) such that Ad(U)4,=
then Ad (RU)A,=A, which implies RUESO(2r), ie. detU= -1

The Killing form of so(2r) is a negative definite Ad-invariant scalar pro
on so(2r) and so it follows easily that any ray in so(2r) starting at the origin
the orbit Ad (SO(2r))A, (or Ad (SO(2r)A;) at most once.

Case I: r is even. Then Ad(UpA,=—A, with Up=diag(l, —1, 1, -1
1, —1)€SO(2r), ie. the orbit Ad(SO(2r)4, (and Ad(SO(2M)4;
central symmetric to the origin. Thus V(idse..) = R Vy(idge-)) is a dc
cone over Ad(SO(2r))A,=S0@2r)U(r).
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Case 1I: r is odd. 1t follows easily that any line through the origin cuts
’o(idgwr_2) twice and that the components Ad(SO(2r))4, and Ad(SO(2r))A;
re central symmetric to each other, i.e. ¥(idg,.,) is again a double cone over
0@ U(r).

Remark. In the special case r=2 the space Vifids) is the disjoint union
f two samples of S*(=S0(4)/U(2)) which was already noticed in [13].

4. The Veronese surface

Let M be a compact oriented Riemannian manifold and consider a harmonic
nap f: M-S". By the inclusion j: S*—~R*+! the map f becomes a vector-
alued function f: M-R"t!, Moreover, translating vectors tangent to S"CR*#
o the origin, a vector field v along f: M—~S" gives rise to a map 0: M—~R"+
vith the property (f,0)=0. The following lemma characterizes the elements of
() in terms of the induced functions .

Lemmad4. Let v be a vector field along f: M—~S". Then vEK(f) if and
wnly if 4M0=2e()D holds, where e(f)=1f.I*2 denotes the energy density of f.

Proof. The covariant differentiation on $* can be obtained from that of
R*+! by performing the orthogonal projection to the corresponding tangent space
>f " and thus, for XcX(M), we have

i (Vxo)" = X(O)—(X(0), /)

vhere X acts on 0 componentwise. An easy computation shows that
(VyVx0)" = YX(O)—(YX(0), )X NY()), X, YeX(M),
(V2r)" = —4M0+(4M0, f)f—trace (db, /) df
holds. On the other hand, we have
(trace R( f., v) f.)" =(trace (fi, v) f2)" —2e(f)0=
=trace (df, 0)df —2e(f)d= —trace (f, db) df—2e( /).

The identities vield that ¢ is a Jacobi vector field albng f if and only if
(N AMO—(AMD0, ) f = 2e(N)D
is satisfied. Moreover, we have

trace ( f., Vv)=trace (df, db) —trace (db, /){df. /).
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By Il fI*=1 the second term vanishes and so equation (ii) of Section 1 is equiva
to the following
) trace (df, d0) = 0.

Further, harmonicity of f means that 4Yf=2e(f)f is valid and hence we
(4Me, 1y = —(V30, [y = —trace V(dD, f)+trace (dD, df) =
= trace V/p, df) + trace de, df) = 2 trace ‘de, df)+8, 4% f} = 2 trace (d0, d)

Assuming v€K(i) we obtain that (48, f)=0 and hence (1) reduces to thee
tion given in the lemma. Conversely, multiplying this equation with [ we
(49, /)=0 and hence (1) and (2) are satisfied which accomplishes the p

Corollary. Let f,f’: M—S" be orthogonal harmonic maps with e(N=e
Then the (unique) vector field v along [ with |vli=1 and expo((n/2)v)=
a harmonic variation.

Proof. By hypothesis 0=f,,=f" and harmonicity of f* yields 4
=2e(f')0=2¢(f)¢. Applying the lemma above we obtain that v€ K(f) whicl
complishes the proof.

Remark. According to a result of [11] a vector field o along f is a harn
variation if and only if v is a Jacobi field along f and e(f)=e(/) holds fi
t€R. Hence there is a one-to-one correspondence between the harmonic varia
of ¥,o(f) and the orthogonal pairs of harmonic maps f, /" M-S with e(f)=

Now we turn to the variation space of the Veronese surface. Conside
eigenspace , of the Laplacian 4=4%" of the Euclidean sphere S? correspo!
to the (second) eigenvalue 1;=6 [1}. An element of J; is the restriction (tc
of a homogeneous polynomial p: R®—~R of degree 2 which has the form

3
p= Jayeu+2 2 byoy
A kwml t<}j

where a;, b €R with .g;a.=0 and ¢, 9, k=1,2,3, 1si<j=3, are s
on S? defined by ou(x)=xi, @, (x)=x,x,, x=(xy, X3, X3)€S8%. (cf. [1] p.
in particular dim J#=3.

Integration over S* defines a Euclidean scalar product on 5. Der
I1=]@,)* and J=|l¢,l|?, the Veronese surface f: S3—S* is defined by

N & 1 2N 0
S(xy, X3, X9) = 5 2 xd-z|ot—— Z xix,04 (%), X3, X)€S?,
I—J [ 153 § 3 J i=<)

where N=>0 is a normalizing factor given by the condition || fi=1. Then
full and homothetic [1}. It is well-known [1] that f factors through the can
projection n: S*—~RP* yielding an embedding of RP? into S
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Lemma 5. For the Veronese surface f: §1-S%, if vEK(f) then 0: S~
1s the decomposition

3
b= Jayp+2 3 byey,
K= i<

here ay, by, k=1.3, 1=i<j =3, are scalars on S* determined by the formulas
a,(x) = —exi+exi+2x,x, X+ 2B, X, X3 — 2(ag+ Ba) X3 X3,
ay(x) =ex}—exd+2Byx X, — 2(f +2) X1 X3+ 203 X3 X3,
ag(x) = —exi+exi—2(x +B)x Xg+ 283Xy X3+ 2P3 X3 X3,

5+
bis(x) = —%x{—%’-xﬂ——‘—zﬂ—’xﬁ-Zy,x,x,+27,x,x,.

bay(x) = ﬂ%_ﬁ:_a_ x{‘%"x:"p—z" X3 =273 X X3 + 273 X1 X34

as+by
2

=(%,, X3, X2)€ES?, & a, By, 7.€R, k=1,2,3. In particular, dim K(f)=10.

bys(x) = —’ﬁ‘zl'x!"' x{—%x}«t—Zy,x‘x,—Zy.x,x,.

Proof. As D maps into ) we have the decomposition of § as above with
3
> a,=0. On the other hand, Lemma 4 implies that

LT} )

3
0=A40—60= .z:(da,—6a,_)(p.+2‘%(dbu—&’u)‘l’u

and hence orthogonality of the polynomials @y, i< Jj, and the relations (¢, @ =0,
Op. @Y=J +8,(I=J), k,r=1,2,3, i<}, yield that the scalars a,, by, k= 1,2,3,
i<j, belong to ;. Thus

3
a,= .21 a;¢,+2‘2; by, r=123

and
bpe = é;af'%+2‘% bffoy, 1=p=<q=3,
where ., b, al* bIf€R such that
(C) é,:ai=0 and .éaf'=0. r=1,23 lzp<gqgzj

3
hold. Moreover, from the equation 2 a,=0 we obtain
k=i

(C Z',:a;=0 and 3 b, =0.
r= =l
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Finally, the orthogonality relations for ¢, and ®,; above imply that the con
(/. 8)=0 is equivalent to the cquation

—

3
Sayxi+d4 3 biyxix; =0, (x, x;, x;)€ 52,
A=) i<j

Substituting the explicit expressions of @, and b, we get

3 2 k)
S Zaioe, -2 5 (b r2ag,9,-8 X F bfioy0,, = 0.
Am)rm} i<framl i<jp=g

A straightforward computation, determining the coefficients of the fourth
homogeneous polynomial on the left hand side, shows that this cquation is sat
if and only if the following relations hold :

(Cy) a;=0 for k=1,2,3,

(Co b},+2a}’=bf,+2a§'=b{,+2a§'=b§,+2a;‘=b:,+2a§’=b:,+2a§’=o.

(Cy) af+a)+8b)=0 for 1z=i<jz:3,

(Co) b§,+2¢z§"+4b{:+4b};=bf,+Za;“+4h{§+4bg=b§,+2a§’+4b}§+4b}§:
Putting e=a], the relations (C,)—(C4}—C,) imply that the matrix 4 =(a} )€ M|
has the form

0 ¢ —¢
A=|-¢ 0 ¢
g -¢ 0

and consequently, by (C,), blJ=0 for i<} Introducing the new (indepenc
variables
2 2, =bl;, 2y = by, 2, = b}y,
B, = bls. By = bly, Bs = bis.
=0 va=bY, 5= b3,
we see that all the remaining coefficients are expressible in terms of the varia
{e, 2% Biv a | k=1,2,3} and a straightforward computation leads to the coeflici
given in Lemma 5.
Our last result asserts that the Veronese surface is rigid. More precisely, we
the following

Theorem 2. For the Veroncse surface Sf:8*=8" the variation space ¥
is zero.

Proof. Using the notations of Lemma 5 we parametrize K(f) with
variables {e, 2,. B, 7, | k =1,2.3). Putting v¢ K(f) we have

3
b= Jap+23 b,
k=1 i<}

where the coefficients a,,b,;, k=1,2,3, 1 2i—j=3, are given in Lemma 5.
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Note that the parametrization of K(f) is chosen in such a way as the cyclic
sermutation m=(123) of the indices on the right hand sides will permute the scalars
3, 4y, Gy and byg, by, bis cyclically. Now suppose, on the contrary, that ¥ ()= {0},
Le. we may choose vEV(f) with Juj2=4¢. Then we have

3 3 3
4J = |vli* = .Z, 2l a,a,(ps. o) +4J .Z; by =(I1-) .Zl"H‘” ‘gl by,

or equivalently

3
@ 1= Zai+ 3 bl
2 A=l i<j
. I1-J 1 . . . .
on S?, where we used the equality = =3 which can be obtained by integrating
L 4

the polynomials ¢} and ¢, on S* Thus

3
O3 +xi+xPr = 'lfté a,(xy, X3, xa)'+'% byy(xys X34 xy*

is satisfied for all (x,, x5, x3)€R?. By computing the coefficients of the fourth order
homogeneous polynomial on the right hand side we obtain a system of 15 quadratic
equations in which the first 5 are given as follows
(i) 4e*+a}+p1+(m+ B =4,

(ii) (2 +2B)—Bin—(@a+F)1s=0s

(iii) —e(By+22,) +a,7;+ (@ +Ba) s =0,

(iv) 5(’1"”:)'*'2(“\31"pt(pl+aa)"'aa(¢|+5a))—¢|71+317s—47373=0~

(v) —28'+4(1:+ﬁ:+(ﬁ“'&)’)‘*“-‘xﬁ:"ﬂx(pl +¢a)"¢a(1:+pa)+8(7:"“7:):4»
and, the equation (3) being invariant under the cyclic permutation n=(123) of the
indices, the last 10 equations are obtained from (iy—(v) by performing the index
permutations & and n*. Denote the equations of the permuted systems by 1)a—V)e
and (i) ,—(V).s. respectively. Our purpose is to show that these equations have no
solution. To do this, first denote by s the symmetric polynomial given by s(x, y)=
=x¥+xpy+)*, x, y€R. Then (v) can be written as

— 2 +8s(xy, ﬂo+(1xﬁ.—ﬂ{—ﬁﬂa—a%—a.ﬁa)ﬂ(ﬂﬂb =4

Performing the index permutations # and n* and adding these three equations
we get
— 661+ 7(s(ay, o) +5(2s, Ba) +5(2ss B)+16(+1i+7D = 12.

Io a similar way, from (i)—(i),—(i),» it follows that

128’+2($(1p Bo) +5 (25, By) + (23, pl)) =12,
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i.e. eliminating the terms containing the polynomial s we have
4 24(1-e)+8(yi+yi+7D) =09.

On the other hand, fixing 7, i=1,2.3, the equations (ii)—(ii),—(ii),, and (i
(iii),—(iii),, form a linear system for the variables a. B, i=1,2,3. Denotin
M(71, 7. 706 M (6. 6) its matrix. we compute det M(3,,7,, 7). For & g,
define

e 2% 0 —-¢ —p -n
-2 —-e ¢ § n O
=3 Fog 2% 0 -

0 —n -0 ={ ¢ 2

n n {0 -2 —¢

Permuting the rows and the coloumns of Af (714 72 72) by the permutation
we obtain  S(y,.7,, 7)) and consequently  det M(y,, y;, ys)=det S(714 71
Similarly, by performing (135462) and (132465) on the rows and coloumn:
M1 72 7s) we get S(ye,75,7) and S(35.7:.7) ie  det Sy 70 7,
=det S(7, 13, 11)=det S(ys, 71, 73). Thus, it is enough to compute det S(¢, n
To do this, let S(&, 5, &) have the decomposition

. seno=[z ]

where A€M(4,4). The matrix A is centroskew and so by using a result of
a direct computation shows that det A=3c*~- ). Assuming 3e?=¢? we have

det S(¢, n, {) = det 4 det (D- CA-'B) = 353(333_(¢3+,’2+c2)):_

Suppose now that y}=y}=y3=3¢. Then cquation (4) implies that 15+ 8¢?
which is impossible. Hence there exists i€ {1, 2, 3} such that y,=3e%. Then,
the above, det M(y,, vy, y5)=3¢%(3e ~ (3} +73+73))*. Further, det M(y,, s, 73)
since otherwise y}+y}+y3=3e* which contradicts to (4). Thus the linear sys
in question has only trivial solution n=ay=ay=f,=f,=0,=0. Then equati
(iv)—(iv),—(iv),, imply that two of the numbers %1+ 3. ¥s vanish. By equati
(V}—v):—(v),» we obtain e=0 which again contradicts to 4).
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