
ON RIGIDITY OF HARMONIC MAPPINGS
INTO SPHERES

GABOR TOTH

1. Introduction

A map f: M -> M' of a compact oriented Riemannian manifold M into a
f

complete Riemannian manifold M' is harmonic if its energy E{f) = j II/JI2 vol (M)

M

is stable to first order with respect to variations of / [2]. Though, by the work of
T. Sunada [14], harmonic maps into nonpositively curved codomains are globally
rigid, an essential obstruction to proving rigidity in the case when RiemM ^ 0 is the
lack of Hartman's uniqueness [3]. On the other hand it has long been noticed that,
in all cases, harmonic maps behave nicely with respect to infinitesimal deformations
preserving harmonicity up to second order, that is, the second variation formula
[8, 13] and Jacobi fields along harmonic maps have been proved to be useful in
showing rigidity of harmonic maps (see [2, 6, 9, 10, 11, 12, 13]).

The purpose of this paper is to study harmonic maps into spheres with various
rigidity properties when higher order terms of the expansion of the energy functional
along a variation are also taken into account. In Section 2 we define the (geodesic)
variations of a harmonic map given by translating the map along geodesies of a
prescribed Jacobi field along this map. The concept of harmonic variation is
introduced [15] and its close relationship with the Jacobi fields is indicated
(Theorem 1). In Section 3 infinitesimal and local rigidity of harmonic maps are
studied in detail; for example, by reducing the problem to that of the linear algebra,
we show that harmonic embeddings / : Sm -*• S" with energy density e(f) = w/2 are
rigid (Theorem 2). (For examples of nonrigid harmonic embeddings, see [17].) In
Section 4 certain metric spaces of locally rigid harmonic maps are introduced and
their classification is reduced to that of the canonical inclusion map i: Sm -• S".

Throughout this note all manifolds, maps, bundles, etc. will be smooth, that is, of
class C°°. The report [2] is our general reference, adopting the sign conventions of
[5].

We thank Prof. J. Eells and Prof. A. Lichnerowicz for their valuable suggestions
and encouragement at the conference on invariant metrics, harmonic mappings and
related topics held in Rome in 1981. We also thank Prof. A. Lee for useful
discussions on the matrix calculus used in this paper and for giving a proof of
Lemma 2.

2. Jacobi fields and harmonic variations

Let / : M -• S" be a map of a compact oriented Riemannian manifold M of
dimension m into the Euclidean n-sphere Sn. A vector field v along / , that is, a section
of the pull-back bundle F = f*(T(S")), gives rise to a (geodesic, 1-parameter)
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variation t -> / , = exp o {tv), teU. Then U G C ° ° ( F ) is said to be a harmonic
variation if the maps ft:M-*S" are harmonic [2] for all teU. The set of all
harmonic variations (or the variation space) of the given map / is denoted by
V(f) c C°(F).

If t -> /,, t G U, is an arbitrary (not necessarily geodesic) variation of / through
8f.

harmonic maps then v = —
ot

the Jacobi equation

is a Jacobi fieid along / [2], that is, v is a solution of
t = 0

j f V = - V2 v + trace R{f^,v)f^ = 0 ,

where V is the induced connection of the bundle <!; = F ® A*(T*(M)); V2u is
the trace of the bilinear form {X, Y) -> VxVyy-VV x yu (see [11]); /„, G C°°(^) is the
differential of / and R denotes the Riemannian curvature tensor of S". The
differential operator Jf e Diff2 {F, F) is strongly elliptic [11] over the compact
manifold M, and hence solutions of the Jacobi equation have uniqueness in the
Cauchy problem; the nullity Null (/) = dim J(f), J{f) = ker Jf, and the
Morse index of / (that is, card {eigenvalues (Jf) < 0}) are finite. By a recent
theorem of P. F. Leung [6] the index of a nonconstant harmonic map / : M -> S",
with n ^ 3, is strictly positive; by an earlier result of R. T. Smith,
index(ids,,) = n+l [13]. For the nullity of idsn see [13] and Section 3 below.

THEOREM 1. Let v be a Jacobi field along the harmonic map f : M -> S" and write

T(v) = {t G U | ft = exp o {tv) is harmonic}.

Then the following cases can occur:

(1) T(v) consists of at most two points (including 0) and \\v\\ is not constant,

(2) \\v\\ is a non-zero constant and T(v) = - — Z ,
INI

(3) T(v) = U, that is, v e V(f), and this is the case if and only if\\v\\ is constant
and trace </„,, Vy> = 0.

Proof. Given 0 =•£ v e C°°(F) the induced variation

t > (/,)* e C » ( F ® T*(M)), F = (/r)*(T(S")),

can be conveniently described by considering the 1-forms

e CW(F ® T*(M))

with values in F, where T\'»[V] : F' -> F'" is the isomorphism defined by the parallel
transport along the geodesic segments t -> /,(x), r G \t', t"~\ (or t G [t", t']), x G M. For
simplicity, we write T{'. = t'r[i;] ® irfA*(T.(M)) and omit 0 in / 0 , T'O, etc. Then
t -• (./;)»*,, with X , G TX(M), x G M, is a Jacobi field along t -> /,(x), t e R, and
applying T' to both sides of the corresponding Jacobi equation and omitting Xx we
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obtain

(A) ^ 2 .

with initial data

(B) PM = f* and
( = 0

(cf. [15, 16]). Using the well-known formula [5, Vol. I, p. 203], we have

R{X,Y)Z = (Y,Z}X-(X,Z)Y, X,Y,ZeX{Sn);

the initial value problem (A) with (B) can be solved explicitly

/ ^

\ IMIINI V \ IMI/IM

(in the case when vx = 0 we take Py(0 = /* + tVv at x e M). In order to compute the
tension field t(/t) = div (/,)„, e C°°(F') [2] in terms of /„, and y we need the identity

( T ' O V ' O T , ) W - V W = - i? ( PB(s)ds,ujw, weC°°(F),
o

relating the induced connections V and V on g = Ff ® A*(T*(M)) and ^,
respectively. (This can be shown directly by using local symmetricity of S" and the
definition of R by parallel transport; see also [15].) Then, as in [16], we get

T'(T(/,)) = T* trace {V'(/,U = trace {(t< oV< o xt)Pv(t)}

= - (v*Pv(t) + trace

in particular, ft: M -*• S" is harmonic if and only if

(C) ¥(», 0 = V*PB(t) + trace | n ̂  f P^s)^, ^ PB(t)| = 0 .

o

On substituting the solution Pv(t) of (A), (B) into (C) an admittedly long calculation
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yields

trace {*</„„)/.}

, ^

^

t r a c e

(in the case when vx = 0 we take the corresponding limits). Assume now that
/ : M -> Sn is harmonic and v e J(f). By Cauchy uniqueness, the complement M' of
the zero locus of ||u|| (not identically zero) is dense (and open) in M. Let 0 j= t e T{v)
be fixed. Using the Jacobi equation and the explicit formula for *¥{v, t) above, a
routine calculation shows that the equation

l-cos(2r|M|) , /r ,„ x

, trace<R(L, v)Vv, u>
Hull

—— {II^H2<V2y, u>-trace </?(Vu, y)Vu, u>} = 0

holds on Af'. If 0 ^ f' e T(u) we get

1 — cos(2f||u||) 1—cos(2r'||i;|

sin(2t||w||)-2r|N
|y|| trace(R(L, v)Vv, v) = 0 (on M').

Write U cz M' for the (possibly empty) complement of the zero locus of
trace </?(/*, v)S7v, v). Then

) l-cos(2t'||y||)
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is valid on U. Assuming that \\v\U\\ is non-constant, we can choose a non-empty
open interval / <= im(||2u|t/||) c= R+ such that

l -cos(d) I - cos (t'k)

sin (tk)-tk sin (t'k)-t'k

for all k 6 /. Both sides of this equation are analytic in k and thus the equality holds
for all k ^ 0. Comparison of the least positive roots gives t = t', that is, T(v) consists
of at most two points {0, t} and we have case (1) of the theorem. If, on the other
hand, \\v\U\\ is constant, then, in particular, V2(||i;||2) ^ 0 on U. Now the formula for
<¥(u, t), v} above shows that x e M' — U implies that

0 = ||uJ|2<V2u, v)x-trace(R{S7v,v)Vv,v}x

= ilNI2(V2(IMI2))*-trace <Vu, u>2 ,

using the formula for R above, and so V2(||i;||2) ^ 0 on M' — U. Since M' c M is
dense we get V2(||u||2) H on M and, by Hopf's lemma [5, Vol. II, p. 338],
compactness of M implies that ||u|| is constant. Without loss of generality we may
assume that ||i;|| = 1. Since the antipodal map of S" is an isometry, nZ <= T(v) is
always satisfied. Thus either T(v) = nZ and we have case (2), or there exists
t0 e (0, n) n T{v). Then

OF(Mo),»> = (cos(2t0)-l)trace</;,Vi>> = 0

and so trace </„., Vu> = 0. Using this and the fact that ||u|| is constant, one can easily
check that *¥(v, t) = 0 for all t e U, that is, v e V(f) and we have case (3). The proof
is complete.

REMARK 1. If v e J{f) and ft — exp o (tv), t e U, is harmonic in the direction xtv,
that is, if <r(/f), iry> = 0, then veV(f). Indeed, the hypothesis implies that

iv, t), v) = 0 and we can argue as above.

REMARK 2. The Euler class of the tangent bundle of an even sphere is twice the
generator which, in the case when m = n and is even, yields that a harmonic map
f: M -*• S" with nontrivial variation space V(f) must have Brouwer degree zero.

REMARK 3. The energy £(/,) is constant along a harmonic variation
t -> ft = exp o (tv), v e V(f), since ft is a critical point of E for all teU. In fact, a
more precise statement appears in [16], namely, that v e V(f) if and only if v e J(f)
and the energy density e(ft) = \trace ||(/,)J|2, as a scalar on M, is the same for all
teR.

3. Rigidity

Let / : M -*• S" be a harmonic map and put
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Then K(f) e J(f) is a linear subspace and, by Theorem 1,

V(f) = {ve K(f) | ||u|| is constant}.

In what follows we compute K(i), where i: Sm -> Sn, m ^ n, is the inclusion map.
By S" c M" + l, vectors tangent to 5" are identified with their translates at the origin.
Then the canonical base vectors em + 2,...,en + leU" + l define k (= n — m)
orthonormal parallel sections Wl,..., Wk of the normal bundle of i. Assuming that
t; e K(i), the (orthogonal) decomposition

k

v = w+ £ <y, Wj)Wj, We

splits the Jacobi equation Jfv = 0 into the system

j j} = 0 , j

= 0

(cf. [16]). It follows that since the scalar (v, WJ) is an eigenfunction of the Laplacian
on Sm, it is the restriction of a homogeneous linear function on [Rm + 1 [1], that is,
there exists a unique vector b/elRm + 1 with (vx, WJ

X) = (bj,x), xeSm. Moreover,
denoting by /? the 1-form on Sm that corresponds to W by duality, the last equation
can be rewritten as

AjS-2(m-l)j3 = 0 .

On the other hand, 0 — trace <!„,, Wv} = trace (i^, VW) = — V*/? and a result of
A. Lichnerowicz [7, Proposition 1, p. 80], shows that W€so(m + l) is a Killing
vector field. The converse is obvious; thus we obtained the following.

LEMMA 1. For the canonical embedding i:Sm^> S" the vector field v along i
belongs to K(i) if and only if the tangential part W of v is a Killing vector field and
there exist vectors bx, ...,bke Um + 1, k = n — m, such that

vx= Wx+ X <bj,x>W{, xcSm,

where {W1,..., Wk) is the canonical orthonormal system of parallel sections of the

normal bundle of i.

In particular, dimK(i) = —^-—- +(n-m)(m + l) and K(ids,,) = so{n + l). The

last equality, in the case when n ^ 2, follows from a sharper result of R. T. Smith
[13], in which he showed that Null(ids,,) = n(n + l)/2 or, equivalently, that
J(ids,,) = so{n + \), if n ± 2. Note, however, that, by the presence of conformal
diffeomorphisms, dimJ(idS2) = 6 (cf. [12]). Furthermore, using Lemma 1, we have
the following.

PROPOSITION. / / / : M -> S" is a harmonic Riemannian submersion and v € K(f) is
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projectable, that is, if f(x) = f{x') implies that vx = vx., x, x' e M , then v = X of,

where X e so(n + 1). //, moreover, v e V(f) then ft = exp o {tv) = (f)to f, teU, where

is the l-parameter group of isometries induced by X.

Proof. As v takes its values in T(S") there is a unique vector field X on the
codomain S" such that v = X o / is valid. By choosing suitable local orthonormal
frames in M and in Sn we obtain V2u = V2(X o / ) = (V2X) o / (cf. [17, Proposition
2]) and hence

(V2X)of = trace/*(/«,, v)& =

Similarly, trace </„., Vu> = trace <(idsn)#, VX} o / . These two equations imply that
X e K(ids,,) and so, applying Lemma 1 in the case when m = n, we get X e so(n +1).
If u e K(/) then Ĥ H is constant and thus for any vector field Y on S" we have

(Y,VxXy = -(X, VyX> = - |Y | |X | | 2 = 0

(cf. [5]). It follows that S7XX = 0 on S" or equivalently that every integral curve
t —• 4>((x), t e R, x e S", of X is a geodesic. Hence

_/;(*) = exp (tvx) = exp (t-Y/U)) = 0,(/(x))

for all x e M ; this completes the proof.

A harmonic map f: M -> S" is said to be infinitesimally rigid if for every
projectable veK(f) there exists Xeso(n + \) such that the equation v = Xof
holds. (Note that X o f e K(f) is always satisfied for X e so(n +1)). The map / is
locally rigid if for every projectable harmonic variation v there exists a l-parameter
subgroup {(j)t) c= O(n +1) such that f = exp o {tv) = 0, o / for all t e U. (Obviously,
isometries of the codomain preserve infinitesimal and local rigidity.) The reason for
the use of K(f) to denote infinitesimal rigidity is that the set of all infinitesimal
isometries of S" precomposed by / forms a linear space which suggests a choice of
K(f) defined by linear constraints. As for local rigidity, for projectable
v = X o / e K(f), we cannot expect exp o (tX o / ) = 0, o / to be valid for all
t e IR, where (4>,) denotes the l-parameter group of isometries induced by X. Hence,
in the definition of local rigidity, we have to restrict ourselves to the subset
V(f) <= K(f) (which is not a linear subspace in general, cf. [17]). Note that in all the
known examples, infinitesimal and local rigidities are equivalent. By the above
proposition, any harmonic Riemannian submersion is infinitesimally and locally
rigid.

THEOREM 2. The canonical inclusion map i: Sm -> S" is infinitesimally and locally
rigid.

Proof. Let v e K(i) be fixed and consider the decomposition of v in Lemma 1.
For p, q G N, let M(p, q) be the vector space of (p x g)-matrices; M(p, q) = L{W, Up).
Finally, write BeM{k,m + \), k = n — m, for the matrix whose rows are
b!,..., bk G Um + 1, and which occurs in the decomposition of v. By identifying the
tangent vectors of S"e!R" + 1 with their translates at the origin, the vector field v
along / gives rise to a matrix Ae M(n + l,m+l) with upper block W e so(m+l)
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and lower block B e M(k, m + 1) such that vx = Ax holds for all x e Sm. If Y e so{k) is
any skew-symmetric matrix then

~w
(D) " " W 41
is a Killing vector field on S" with v = X oi and hence i:Sm^> S" is infinitesimally
rigid.

Now let v e V{i) with ||t;|| = 1. Then, for x e Sm, we have

1 = ||t;||2 = \\Ax\\2 = (ATAx,x} = ({WTW + BTB)x,x},

that is, we get WTW + BTB = Im + l (the identity). (In particular, by the identification
K{i) = so(m + \)xM(k, m + 1) the variation space of i has the form
V{i) = U{{W, B) 6 K(i) | - W2 + BTB = Im + 1}.) To prove local rigidity, we have to
find Y e so(k) such that the corresponding Killing vector field X above has the
property that the integral curve t -> <j)t{x) = e'xx of X is a geodesic for all x e Sm.

This holds if and only if —-jetXx = —etXx, that is, if and only if X2x = — x for all

x G Sm. By computing X2 in terms of the blocks of X and using the fact that
- W2 + BTB = Im +!, we have to choose Y e so(/c) so as to satisfy the equality

Let ey,..., em+l e Um + i be the canonical base vectors and let c l 5 . . . , cm + 1 e IRk denote
the columns of B. Having in mind that the above equation must be valid we define
YCJ = —BWej,j = l , . . . , m + l . Then Y is skew on the vectors cl,...,cm + l since

<yc,-,c,> = -(BWej,Bej.) = -(WepB
TBer) = -

2 + Im+l)er> = <ej,(W2 + Im+1

Putting V = span{c l 5 . . . , c m + i } c Um + l we define

where x = £ o^c, e F. We have

m+1

<Yx,C/>= (

m+1
= -<x ,Y C / >
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and so Y is well defined (that is, Yx does not depend on the particular
decomposition of x) and skew on V. Extending Y\V to a skew-symmetric linear
endomorphism Y eso{m + l) the equation BW+YB = 0 holds; this completes the
proof.

REMARK 1. An immediate consequence of Theorem 2 is that any harmonic
Riemannian submersion / : M -> S" onto a totally geodesic submanifold of S" is
infinitesimally and locally rigid.

Indeed, assuming that im / = Sm c S", any projectable vector field v along / can
be written uniquely as v = w o / , where w is a vector field along the inclusion
i: Sm -> S". If, moreover, v e K(f) then by choosing suitable local orthonormal
frames a similar computation as in the proof of Proposition 2 in [17] shows that

V2y = ( V 2 w ) o / = trace/?(/„, v)f+ = (trace KO*, w)ij of

and trace </„,, Vu> = (trace (i^, Vw» o / , that is, w e X(j). Thus Theorem 2 implies
the existence of a vector field Areso(n + 1) with Xoi = w and it follows that
X o / = v, which completes the proof in the infinitesimal case. As for local rigidity, if
v e V(f) is as above then w e V(i) and, again by Theorem 2, we can choose
X Gso{n + 1) so as to satisfy VXX oi = 0. Thus VXX of = 0 which implies local
rigidity of / .

REMARK 2. From the proof of Theorem 2 we see that
V(idsn) = so{n + l)n USO{n + l), in particular, V(idsn) = {0} for n even. (This
follows also from Remark 2 after Theorem 1.)

For odd spheres a stronger version of Theorem 2 is valid. First we state the
following lemma, due to A. Lee.

LEMMA 2. Let Weso(m+l) and BeM(k,m + l) with -W2 + BTB = Im+l. If
n = k + m is odd then the equation BW+YB = 0 has a solution Y such that the
corresponding matrix X in (D) belongs to so{n+1) n O(n +1).

Proof. We verify the statement for k ^ m +1 and m = 2r — 1, r E N. (The other
cases can be treated similarly.) By the singular values decomposition of matrices,
there exist V e O(k) and U e O(m +1) such that B = VY.UT, where

S = eM(/c,m +

and px ^ ... ^ p2 r . (The numbers pj, j = l , . . . ,2r, are often called the singular
values of B.) Then BTB = l /diag(p2, . . . , pl,)UT and using the equation
-W2 + BTB = Im + 1 we have -W2 = t / d i a g ( l - p 2 , . . . , l-p2

2r)U
T. On the other
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hand, U diagonalizes WTW and hence, by an appropriate choice of U, we have
W = UAUT where

Thus, computing VK2 = UA2UT, we get p2j- i = P2j> t n a t is> ^ +°"j = 1> where
°i = PIP 7 = !>•••>>*. Because k — (m + \) = k — 2r is even we can define
Y = V(A 0 £) KT e so(fc), where

i] [-1 i
Then BW+YB = V(LA — ET.)UT = 0 and a staightforward computation shows
that the matrix X in (D) is orthogonal; this completes the proof.

THEOREM 3. / / n is odd and v is a harmonic variation of the canonical inclusion
map i: Sm -> S" then there exists a Killing vector field X e so(n +1) of constant norm
on S" such that v = X o i.

Proof. Keeping the notation of the proof of Theorem 2, let v e V(i), where ||u|| is
a constant, say 1, and write Weso(m + l) and B e M(k,m + l) for the matrices
defined by v. Choosing Y e so(k) as in Lemma 2 we have v = X oi and
\\XX\\2 = HXxll2 = ||x||2 = 1 for all x e Sn. Thus the theorem is proved.

REMARK. Theorem 2 can also be proved by using the singular values
decomposition; however, we preferred to give an elementary and direct construction
for a solution of the equation BW + YB = 0 in so{k).

Returning to the general situation, let / : M -» S" be an infinitesimally rigid
harmonic map and assume that i m / c So = exp(/!(!(TX0(M)) for some xoeM. If
v e V(f) is projectable then infinitesimal rigidity of / implies the existence of a
Killing vector field Xeso(n + l) with v = X of. Moreover, as HXo/H = ||i;|| is
constant it follows that \\X\\ is constant on a relatively open neighbourhood of x0 in
So. Thus HA Ŝoll is constant, that is, X oi0€ V(i0), where io:So -» S" is the canonical
inclusion. By local rigidity of i0 there exists X e so{n + 1) such that X o i0 = X o i0

and the integral curves t -+ $r(x), t e U, of X are geodesies for all x e So. Hence / is
locally rigid and we have proved the following.

THEOREM 4. Let f: M —*• S" be an infinitesimally rigid harmonic map with
i m / c= exp(/,,.(TY0(M)))/or some x0 e M. Then f is locally rigid.

The condition for the image of / is satisfied if either / has maximal rank, with
surjective /,., at some x0 e M, or / is totally geodesic. (In the latter case / maps
geodesies onto geodesies and a straightforward argument shows that i m / c S" is a
totally geodesic submanifold.)

4. Metric spaces of locally rigid harmonic embeddings

Write Harm (M, S") for the set of all harmonic maps f: M -> S". Two maps /
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and / ' in Harm (M,S") are called equivalent, / ~ / ' , if there exist maps
/ 0 , . . . , / k + 1 E Harm (M,Sn) and vectors v> e V(fj), j = O,...,k, such that
f° = / , fk + 1 = / ' and expo?/ = fj+l,j = 0,...,/c. Clearly ~ is an equivalence

k

relation. If / ~ / ' , write p( / , f) for the infimum of the numbers £ ||iy*|| for which

v>eV{f>\ expovi = fJ+1, j = O,...,k and f° = / , fk+1 = / \ ° T h u s p is a
distance function on the equivalence class N{f) <= Harm (M,S") containing the
harmonic map / : M -> 5".

Our present aim is to determine to what extent N(f) depends on the particular
choice of / . In this way, for locally rigid harmonic embeddings / : M -*• S" (where
V(f') is the same for all / ' e N(f)), the problem of describing N(f) is reduced to that
of describing N(i), where i: Sm -> S" is the canonical inclusion map for some meN.

Let / : M -> S" be a map and define the span of / by S0(f) = S" n span im / ,
where i m / is considered as a subset of U" + 1 (=> S").

THEOREM 5. Let f: M -> S" be a locally rigid harmonic embedding with
m-dimensional span. Then there exists a bisection *¥ : V(f) -» V(i) preserving the
additive relations, where i: Sm —> S" is the inclusion map. Moreover the metric spaces
N(f) and N(i) are isometric.

Proof. We may suppose that the span of / is Sm c S". If v e V(f) then local
rigidity of / implies the existence of a Killing vector field X e so(n+1) such that we
have v = Xof and (VxX)of = 0. Denote by F that (arcwise) connected
component of the zero locus of VXX which contains im/ . As in the proof of
Theorem 2, F consists of eigenvectors of X2, that is, X2x = — \\Xx\\2x for all x e F.
The eigenvalues of X2 form a discrete set and hence Ĥ H is a constant, say c, on F
and F c S" on a totally geodesic submanifold, since it is the intersection of the linear
subspace k e r ( X 2 - c 2 / m + 1) c r + 1 with Sm a F; thus we obtain that X oie V(i).

IfXeso{n + l) with v = Xof and ( V ^ X ) o / = 0 then (X-X)of = 0. Since
the connected components of the zero locus of a Killing vector field are totally
geodesic submanifolds [4, Theorem 5.4, p. 62], it follows that (X-X) | Sm = 0, that
is, X o i = X o i. Define *¥ : V(f) -• V(i) by ¥(u) = I o i , where X e so(w +1) with
Xof=v and (VxX)of= 0. By the above reasoning, T is well-defined and injective
and it preserves the additive relations. Local rigidity of the inclusion map i: Sm -> S"
implies that *¥ is surjective, which proves the first statement. As for the second, define
O : N{f) -> N{i) such that, for / ' e N(f), O(/ ') is the inclusion of the span S0(f) of
/ ' into 5". A straightforward argument shows that O maps N(f) onto N(i)
isometrically; this completes the proof.

REMARK. If / : T2 -*• S3 is a harmonic embedding with e(f) = j then
^o(/) = ^3- An easy computation shows that the geometric lattice of idsi has the
form [17]

G(ids>)
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and, by [17], there is no bijection *¥: V(f) -*• V(idsi) preserving the additive
relations. Again, we obtain that / is not locally rigid.

COROLLARY. Let f: M -> S" be a locally rigid harmonic embedding with n odd.
Then there exists a contractive surjection 6 : N(idsn) -> N(f).

Proof. By the previous theorem it is enough to consider the case when
/ = i:Sm -+ S". F o r / ' e N(idsn), def ine 9{f) = f ' o i e N(i). C l e a r l y , t h e m a p
0: N(idsn) -*• N(i) is contractive. By Theorem 3 any v e V(i) can be extended to a
harmonic variation of idsn which implies that 6 is surjective.
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