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ON HARMONIC MAPS
INTO LOCALLY SYMMETRIC RIEMANNIAN MANIFOLDS (*)

GABOR TOTH

1. Intreduction.

The purpose of this paper is to study the global geometric prop-
erties of geodesic variations of harmonic maps. A variation is called
geodesic if it is given by translating the map along geodesics defined
by a prescribed vector field along this map. In Section 2 we deduce
a Jacobi equation for geodesic variations and give relations between
the tension fields and stress-energy tensors of maps oceuring in a
given variation. In this section local symmetricity of the codomain
is assumed only. As immediate consequences of this treatment we
obtain the celebrated Eells-Sampson homotopy theorem for flat
codomains and a recent result of P. Baird and J. Eells concerning
the stress energy of submersions. Supposing that the codomain is
a space of constant curvature, in Section 3 we give an algebraic
characterization of harmonic variations in terms of the initial data
(Theorem 1) and we point out an intrinsic relation between Jacobi
fields and harmonic variations (Corollary 2). The main result of this
section is a rigidity theorem (Theorem 2), which i8 an infinitesimal
version of T. Sunada’s result, for positively curved codomains. In
Section 4, still assuming that the codomain is a space of constant
curvature, we prove that the metric space of simple harmonic maps
homotopic to a given map through broken harmonic variations is a
totally geodesic submanifold of the codomain (Theorem 3). A similar
result has recently been obtained by R. Schoen and 8. T. Yau for
nonpositively curved codomains. In Section 5 we consider the case
when the codomain is the complex projective space. Though an alge-
braic description of all harmonic variations can be given (Theorem 5)

(*) I risultati conseguiti in questo lavoro sono stati esposti nella conferenza
tenuta il 27 maggio 1981.
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there are several obstructions to the existence of harmonic variations
(Theorem 7). Finally, in Theorem 8, we give a geometric description
of parallel harmonic variations.

Throughout this paper all manifolds, maps, bundles, etc. will be
smooth, i.e. of class C*, unless stated otherwise. The Report [3] is
our general reference for harmonic maps though we adopt the sign
conventions of [8].

We thank Prof. J. Eells for his valuable suggestions and constant
help during the preparation of this work and Prof. J. Kollir for
clarifying and completing Theorem 7.

2. Basic relations concerning the tension field and the stress-energy
tensor.

Let (M, g) be a compact Riemannian manifold and (M’, g) a
complete locally symmetric (V'R'= 0) Riemannian manifold. Given
a map f: M — M’ and a vector field » along f we define f,;: M — M’
by f. = exp'-(tv), te R. Let F¢= (f)*(T(M')) be the pull-back of
the tangent bundle of M’ via f,. The induced metric and connection
of 't will be denoted by {, >, and V¢, resp. If #',3" € R then there
is a canonical bundle isomorphism zh[v]: ' - F* defined by the
parallel transport along the geodesic segments ¢ — fi(z), t € [#,1"] (or
[t",%]) and ve M. It extends to an isomorphism

FY @ A*(THM)) — F* ® A T*(H))

which is also denoted by z%[v] and we omit 0’s in f,, 7, etc. We
write 7i» when there is no danger of confusion.

In order to deduce a Jacobi equation for the variation of f by v,
let X,e T.(M), xe M, and choose a curve y: (— &, &) - M, > 0,
with y(0) = @ and p(0) = X,. Then ¢ — exp’ (tv,,), t € R and 8] < &,
is a variation of geodesics and hence we have

Varat Vasa ((f)x Xa) + B'((f)xXoTw) 10 = 0.

M’ is locally symmetric and so the curvature tensor R’ commutes
with the parallel transport. Applying z* to both sides of the equa-
tion above and omitting X, we obtain

d*P,(t)
di2

(A) —]—R’(P,,(t),’l))’v= 0,
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where P,(t) = v!(f,)x € C(F ® T*(M)). The two initial data for the
Jacobi equation (A) are

dP,(t)

dt ‘=0=d'v.

(B) .P';(O) = f* and

For fixed v € C(F), equation (A) with (B) is an initial value problem
with unique solution which can be expanded into a convergent power
geries in 1.

Our purpose is to describe the behaviour of the one-parameter
families of tension fields

7(fo) = — ()*(fo)w = AIV* (fo)x » teR,
[3] and stress-energy tensors
8(f) = 3 1(f)e]29— (f)* g’ € C(O* T*(M)) , teR,
[1] especially to study the structure of harmonic maps occuring in the
variation ¢ —f,, t€ R. Thus, in order to relate these tensors with
the solution of the Jacobi equation, we have to express z(f,) and

S(f,) in terms of the 1-forms P,(?) with values in F.

LemMA 1: If we C(F) and X is a vector field on M then
! :
(Vi r)w— Vyw = — R’(f-r’(f,),,X ds, 'v)w .
0

Proor: Straightforward, using V'R'= 0 and the definition of the
curvature tensor by parallel transport [6], p. 54.
Using Lemma 1 we have

H(7(f,)) = v(div* (f.)x) = 7* trace {V(f,),} = trace {(z* V1)) P,(t)} =
1
= trace {VP,(1)} — trace {{ R'( | P.(8) ds, v) ) Po(t); =
(e (feum o) 2}
¢
= — |d*P,(t) 4 trace {R'( | P,(s) ds, v} P,(!)¢) -
( fe(raosn 70
Thus, the map f,: M —» M’ is harmonic [3] if and only if

(©) W(v, 1) = d*P,(t) + trace {R( f P,(s) ds, 0) Pv(t)} =0}
0
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A vector field v € C(F) is called harmonic variation if f,: M — M’
is harmonic for all 1€ R. The set of all harmonic variations of
f: M > M' is denoted by <U(f). Obviously, RU(f)c VU(f) but, as
Example 1 below shows, U(f) is not necessarily a linear space, i.e.
Uf) 4+ V(f) ¢ U(f) in general. If ve C(F) is a harmonic variation
then the first variation of the energy functional E [3] yields

B __ f Ce(f), 7405 vol (M) = 0,
M

where vol (M) is the volume form of M, and hence the function
t — E(f,) must be constant.

Lemma 2: (div 8(f,)) Z = — (¥(v, 1), P.(t) Z) holds for all vector
fields Z on M.

ProoF: TUsing the identity (div S8(f.)) Z = <{z(f), f«(Z)), we have

(div (1) Z = <z(f.), (1) 2> = <T(z(f1), T*(f)a 2> = —<¥(v, 1), Poft) Z)

and the result follows.

As direct consequences of our approach we obtain the following
known results:

ProrosrTION 1: If M’ is flat then every map f: M —» M’ is homo-
topic to a harmonie map. (Eells-Sa,mpson’s homotopy theorem for
flat codomain [4].)

Proor: If M' is flat, i.e. R'=0, then P,)=f,+ tdv and
Y(v,t) = d*f, + td*dv. The de Rham decomposition of f, has the
form f, = du + 2, where Qe C(F® T*(M)) is harmonic. Taking
v =—u we have P,(l)= (1—t)du+ Q and ¥(v, ) = (1 — t)d* du.
Hence f, is a harmonic map homotopic to f.

ProrosiTiON 2: If f: M — M’ is a harmonic map then the diver-
gence of its stress-energy tensor vanishes. Morecover, if f: M — M’ is
a submersion almost everywhere and v e C(¥) such that div S(f)=0
for all te R then v is a harmonic variation. (P. Baird-J. Eells [1].)

As Example 2 below shows the assumption that f: M — M’ is
a submersion almost everywhere cannot be dropped in the second
statement.
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ProrosITION 3: If v is a harmonic variation of the map f: M — M’
then

(i) trace {R'(fs, v)fs} = Vv,
(ii) trace {R'(fy, v)dv} =0
are valid.
Proor: Calculating the first three terms of the Taylor expansion
of ¥Y(v,1) in t, equations (i) and (ii) are easily obtained.
We note here that equation (i) is well-known from the second

variation formula of the energy functional E [3]. Vector fields v € C(F)
satisfying equation (i) are called Jacobi fields along f.

PROPORITION 4: Suppose that M’ is negatively curved. Then
every nonzero harmonic variation v € C(F) is parallel and either f is
constant or f maps onto a closed geodesic y of M’ and v is tangent to y.

PrOOF: By equation (i) we have

0<— f ‘trace (B (fy, 0)0, ;> vol (M) = f (V*0, 9> vol (M) <0
M M

and hence dv =0 and rank f<1 on M. By a theorem of J. H.
Sampson [10] the result follows.

3. Harmonic maps into spaces of constant curvature.

Throughout this section M’ will denote a complete Riemannian
manifold of constant curvature ¢ 0. Then the solution of the ini-
tial value problem (A) with (B) has the form

P,(t)= (f,, + tdv, "—Z—"> II_:TI + cos (¢ \/E"'v")( el (1*, II_:W>II_:'II) L
e (o E) )

(if v, = 0 then we take P,(t) = f, + tdv at z€ M).
Substituting it into (C), after a long calculation, we obtain the
following expression:

Y(v,t) = cos (at)d* f,,— L2 Vo 4- s_i1_1£_qz_t_) trace {R'(f, v) f«} +
a 21 Bi;l (act) trace {B (fx, v) do} - 2 sin (at) —a ;Zoct cos (o)
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sin (af) —at

cos (at) —1
8 “3

-trace {R'(dv, v) dv} — o (d*fy,v)v+ 0

(Y0, oy + ¢ T2 CDZ2ER D o (R, 0)fa, 93} +

— c08 (2at) — 2¢ct 8in (af) + 1
o =
M sin (2at) — 4 8in (at) 4 4et cos (at) - 2at
208

+

trace {(R’'(fx, v)dv, vD}v +

+ trace {{R'(dv, v) dv, v)}v,
where o = +/c||v].

A complete characterization of harmonic variations into spaces of
constant curvature is given as follows:

THEOREM 1: Let f: M — M’ be harmonic. Then ve C(F) is a
harmonie variation if and only if » is a Jacobi field along f, trace {f,
dv) = 0 holds and |»| = const. on M.

ProorF: Suppose that v»e C(F) is a harmonic variation. Caleu-
lating the coefficient of the term #® in the Taylor expansion of ¥(v, t)
we obtain that

trace {R'(dv, v) dv} = o(V®, v)v
is valid. Using this equality we have
o2 Va(Jlo]?) = 2]v]|*<V*v, v} + 2|v]|* trace |dv]* = 2 trace {dv, v)*>0

and hence V3(|v[2)>0. Thus, compactness of M implies that |v| =
= const. Hence {dv, v) = 0 and equation (ii) of Proposition 3 im-
plies that trace (f,, dv) = 0 holds.

Conversely, if » is a Jacobi field along f with constant norm and
trace {fy, d»> = 0 is satisfied then, using the explicit expression of
¥ (v, t) above, a simple calculation shows that ¥(v,f) = 0 for all te R
which eompletes the proof.

Exavpre 1: Suppose that b,(M)> 0 and that the Ricei tensor
field of M is positive semidefinite at every point of M. Then the
Albanese map J: M — A(M) [9] is totally geodesic and it defines a
fibre bundle over the flat Albanese torus A(M) of dimension b,(M).
Using the product structure of A(M), let n: A(M) — 8! be a pro-
jection and denote i: 8! - 87, n»>2 an isometric embedding onto a
great circle of S». Then the composition f=i-n-J: M - 8" is a
totally geodesic map. Let W, ..., W»! be orthonormal parallel sec-
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tions of the normal bundle of i: §! — §* and denote U the tangen-
tial field of . Finally, choose a constant ¢ € R and functions y, € (M),

n—1
i=1,...,n— 1, satisfying V2u,+ trace ||f,|2u; =0 and > ui = const.
n—1 i=1
We claim that v=¢U-f + > u,W*-f is a harmonic variation. By
i=1

the construction above f, = (U'f)® w, where w i8 a 1-form on M.
Thus

trace {F'(fx, v) fu} = trace {{fx, 0> fu— fal*v} =

n—1
= o trace {fy, U-f>f.— o trace |f,|? U-f——‘gltrace lful2pes Weef =

= o trace (w® w) U f— o trace |w|? U-f—”iltrace fxl2ps Wief=
i=1

n—1

— zV’[hW"f = Vo
i=1

and hence » i8 a Jacobi field along f. Furthermore, trace {f«, dv) =
n—1

= o{fx, U-)) =0 and |v]>2=c®+ > pi= const which accom-
i=1

plishes the proof. As a special case of the example above, let M = T’
(= 2-dimensional flat torus with canonical parameters 0 <¢ < 2z and
0<p<2m) and put n=3. Let f: T? —> 8% be the projection =: T* - §?,
ni(p, v) = @, followed by a totally geodesic embedding ¢: 8! - §°.

In what follows we describe the structure of the set U(f) of all
harmonic variations. If v is a vector field along f then

v=p U f+ W f4 u, We-f,

where u,, u, and yu, are scalars on 7' considered as (2n)-periodic fune-
tions on R? in each variable separately. By Theorem 1, an easy
calculation shows that ve U(f) if and only if Ay =0, du, = u,
i=1,2, and u? 4 p® 4 u2 = const, where 4 denotes the Laplacian
of T*. Compactness of 7'* implies that p, = const and moreover if
v € VU(f) then span {v, U-f} c VU(f). Thus, it is enough to describe
harmonic variations of f orthogonal to U-f, i.e. we may put u, = 0.
The scalars u, and u, are real eigenfunctions of the Laplacian with
eigenvalue 1, i.e. they are first order homogeneous trigonometric poly-
nomials in ¢ and v, [2]. A simple discussion of the possible cases
will then show that condition u? 4 u2 = const implies that both u,
and u, depend on one of the variables ¢ and y only. Thus, if u,
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and u, do not depend on y, we have
m=asing—beosp or u =asinp—bceosy,
py=>bsingtacosp or u=—bsing—acosep,

where a, b € R, and analogously for the other variable. Introducing
the notations

»*="U-f,
v! = sin pWi-f 4 cos pW2-f,
2 = — cos pW*-f | gin pW2-f,
9% = gin pW-f — cos pW?2-f,
= — cos pW+f — sin pW*-f,
v* = gin pW2-f - cos pWe-f,
?® = — cos8 yW?-f - sgin yW2-f,
9" = gin y Wi-f — cos yW2-f,
18 = — cos pW?i-f — gin pW2-f,
we have
V(f) = span {v°, v, 2} U span {v°, v3, v¥} U
U span {v°, v%, v} U span {v°, v7, v%} ,
i.e. U(f) is the union of four linear 3-spaces intersecting each other
in a common line. The harmonic variations vf, ¢ = 0, 1, 2, 3, 4, have
the form v* = Y¢-f, where Y* is a left- or right-invariant vector field

on 8% = Spin (3), [6], pp. 27. The « exceptional » harmonic variations
v, i =5, 6, 7, 8, have the following property:

fi = exp’-(v¥): I 83, i=25,6,7,8,

is a totally geodesic map onto a great circle of 82 for f € (n/2)Z and
f:: T* — 88 is a harmonic embedding of the torus into 82 for t ¢ (z/2) Z.
Moreover, the definition of ¢, ¢ = 5, 6, 7, 8, shows that ¢ is not of
the form f,(X)+ Yf, where X e X(7?) and Y € X(S8% are Killing
vector fields, especially the reduced nullity of f is strictly positive, [15].
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As an immediate consequence of Theorem 1 we have the following:
CoROLLARY 1: Let f: M — 8% be a harmonic map with dim M =

= 2n. If there exists a nonzero harmonic variation » then the degree

of the map f is zero.

Proor: By Theorem 1 the vector field v is a nowhere zero sec-
tion of ¥ and hence the Euler class ¢(F) vanishes. On the other hand
0=¢(F) = f*(e(T(S"))) = deg fe(T'(8%*)) and since the Euler class of
an even dimensional sphere is nonzero it follows that degf = 0.

COROLLARY 2: Let f: M — M’ be a harmonic map. A vector

field v along f is a harmonic variation if and only if » is a Jacobi field
along f and trace [(f,).|® = trace [f,||? for all e R.

Proor: By the formuls of P,(t) at the beginning of this section
we have

trace || (f.)«])t = trace | P,(t)|* = trace {cos*‘ (v |olt)]fell +

o sine (va o) (fu, o) + T faoe +

ofo]®

,_sind (vaolt)) /. o \1, sin(24]o]t)
il (‘ ool )(d uv||>+_———v&uvll Gop Gy

) o ) (o )

Suppose that v € C(F) is a harmonic variation. Then, by Theorem 1,
v is a Jacobi field along f and, using frace {f,, dv> = 0 and |v| =
= const, the formula above reduces to

trace || P,(t) |* = trace |f.|®.
Conversely, suppose that » is a Jacobi field along f such that

trace |f:) | = trace ||f,]®

for all e R. In view of Theorem 1 we need only to show that
trace (fyx, dv) = 0 and |v| = const are valid. By the formula above

d%trace | Po(®)]|?]i=0= 2 trace {fy, dvd> = 0.
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Using this and the assumption that o is a Jacobi field along f we
obtain

%‘;tmce [ Po(2)]|? = 2 trace {(1 —cos (/0 ||| t)) ((h;, ﬁ)a-l-

+ /& o] sin (v o] <f*, ﬁ) (av, "—")} —0

and it follows eagily that trace {(dv, »)* = 0 is valid. By choosing
an orthonormal frame {e!, ..., e} c T.(M) at some point x€ M we

have 0 = trace (dv, v)* =% > (¢'(|v[*))* and hence |v| = const on M.
i=1

COROLLARY 3: Let f: M — M’ be a map and suppose that » is
a nowhere zero vector field along f with nonconstant norm. Then
there are only finitely many parameter values for which f, is har-
monie.

ProOF: Suppose that the set 7' = {t € R|f, is harmonic} is infi-
nite, i.e. unbounded. By the formula of ¥(»,1?) above we have

f(‘I’(v, t), v) vol (M) = tfll'v_l"; trace {dv, v)* vol (M) +
a " + terms bounded in ¢.

Thus trace {(dv, »>® = 0 which implies that |v| = const.

Using the formula in Lemma 2 we can calculate the divergence
of the stress-energy tensor of the map f,: M — M’ in terms of the
differential f, and v e C(F). The explicite expression of div S(f,) is
rather complicated but in case when ||v| = const=+ 0 it reduces to
the following:

(— div 8(70) Z = cos® (at)<a* i, fa(2)) + 2 Kcos (at)-

sin (at)

*(— V20 4 trace R'(fy, v)fs) + o (a* foy DO —

2 sin (ect)

trace fx, dv) v, f*(Z)> + <005 (at)@*fu+

sin 8in (at)
o

+ S g, 1 SR (9 - trace B/, 0} ), Vw)}

where Z i8 a vector field on M.
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ProposrTioN 5: Let f: M — M’ be a map and » be a vector field
along f with |v]| = const. Then (div 8(f)))Z = 0 for all t€ R if and
only if the following equations are satisfied:

(') <@*fx, [x(Z)> = 0, :
(ii') <d@*fx, Vs> + (— V20 + trace {B'(fs, v) fa}, f+(Z)) = 0,
(iii") <{— V%0 4 trace {R'(f*, ”)f*}r Vo) +

+ o(<d*fx, v> — 2 trace {fy, dv))<v, fs(Z)> = 0.
ProoF: Straightforward, using the formula above.

COROLLARY 4: Let f: M — M’ be an harmonic map and » be a
parallel vector field along f. Then div S(f,) = 0 for all teR.

ExAMpPLE 2: Let f: 8' — 8» be an isometric embedding onto a
great circle of 8° and let » be a parallel unit section of the normal
bundle of f. Then, by Corollary 4, div 8(f,) = 0 for all te R but
f: is nonharmonic for ¢ ¢ (=/2)Z.

COROLLARY b: Let f: M — M’ be a map and » be a vector field
along f with |v| = const=£ 0. If div 8(f_,) = div 8(f) = div 8(f,) =0
for some #,¢ (x/(2+/0 |v])) Z then div §(f) =0 for all teR.

Proor: Let Z be a vector field on M. It is enough to show that
(i")-(iii’) are satisfied in Proposition 5. Equation (i’) is valid because
(—div 8(f)) Z = {@*fx, [+(Z)) = 0. Furthermore, using (i’), we have

8in (Zat,)
20

{@* fay Vo) + (— V2 + trace {R'(fx, v) fu}, Ix(2)%} =0

% {(—div 8(f,))Z — (—div 8(f_,,)) 2} =

and

% {(— div S(ft.))z + (_ div ‘S(f—to))z} - Bin;g“to),

+{(— V@ + trace {B'(fx, v) fu}, V20> +
+ 0(<d* fxy > — 2 trace (fy, d’”>)<’”’ f*(Z»} =0

which implies (ii’) and (iii’), resp.

A rigidity theorem for harmonic maps into locally symmetric non-
positively curved Riemannian manifold has recently been proved by
T. Sunada [16]. In the case when M’ is a space of constant curva-
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ture, using a result of A. Lichnerowicz, we obtain an infinitesimal
rigidity theorem as follows:

TaEoREM 2: Let f: M — M’ be a harmonic Riemannian sub-
mersion almost everywhere, with M’ oriented, and let V be a vector
field on M. If v = V-f is a harmonic variation then V is a Killing
vector field and for t € R we have f, = h,-f, where k, = exp’-(tV) is
an isometry.

If M = M' is a compact Kihler manifold and f = identity then
the complex analogue of this result is well-known, namely, if v is a
Jacobi vector field along f then v is an infinitesimal holomorphie
transformation, [12] and [15].

LeEmMmMA 3: Let M be a totally geodesic submanifold of M’ with
natural inclusion f: M — M’ and let » € C(F) be a harmonic varia-
tion. By the orthogonal decomposition v = »* -} 97, the tangential
part o7 is a Killing vector field on M and v satisfies the strongly
elliptic equation

Vipt 4 omvt =0 where m = dim M .

ProoF: Theorem 1 implies that |v| = const and since M c M’ is
totally geodesic, the following equations hold:

1) Vet + emot =0,
(2) VT 4 g(m—1)o" =0,
(3) trace {fy, dv"> = 0.

In order to prove that »" is a Killing vector field on M, let § denote
the 1-form on M which corresponds to v7 by duality. The harmoni-
city of f implies that trace (f,, dv") = — d*f = 0. Furthermore,
by (2), we have V2§ + g(m—1)f =0 and so

AB— 20(m — 1) B + &(a@* ) = 0

is satisfied. By a result of A. Lichnerowicz [9] it means that »7 is
Killing vector field, which completes the proof.

ExAmMPLE 3: If M = 8m, M'= 8§™** and f: 8" — §=+* is the ca-
nonical embedding then, choosing an orthonormal system 10,, ..., w, of
parallel sections of the normal! bundle of f, equation (1) splits into
the equations

At w) + mlvt,w) =0, N=1,..., k.
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Thus the scalar (v*, w,> on 8™ c R»+!, being an eigenfunction of the
Laplacian, is the restriction of a homogeneous linear function on
Rm+1, [2].

PROOF OF THEOREM 2: By Theorem 1, |V | = const and hence
we need only to show that V is a Killing vector field on M. Let
h, = exp’+(tV), te R. Because f is a harmonic Riemannian submer-
sion the map h, is harmonic [13] and [14]. Thus ¥ is a harmonie
variation of the identity of M’ and so by Lemma 3, V is a Killing
vector field.

If the vector field v along f is parallel then the variation of f by v
can be geometrically characterized as follows:

THEOREM 3: Let f: M — 8" (or RP") be a map and suppose that
there exists a parallel vector field v along f with |v| = 1. Denoting
by T ={te R|f, is harmonic} we have 4+ z+ T c T and the following
cases can oceur:

(a) v is a harmonic variation (7 = R) and f is either constant
of f maps onto a closed geodesic y with v tangent to y and the maps f,
can be obtained by rotation,

(b) Tc(n/2)Z and the necessary and sufficient condition for
nf2 e T is that

{@*fy,v> =0 and trace (f,, v)*v = trace (fy, VD1

are satisfied. Moreover, /2 € T implies that the Morse index of f is
strictly positive, provided f is harmonic.

ProoF: Using the antipodal map of 8" we have + x4 Tc T.
By the formula of ¥(v,?) at the beginning of this section we obtain

sin (2t)

f(Y’('v, 1), »> vol (M) = trace {(fy, )2 — ||f4]|%} vol (M) .

M

(a) Suppose that there exists ¢, € T — (n/2)Z. Then, by the
equation above trace (fy, v)? = trace |f,[? holds, i.e. f, =v® w,
where w is the 1-form on M defined by w(Z) = (f«(Z), v) for all
vector fields Z on M. Especially, rank f<1 on M. Because v is par-
allel we have dfy, = dv®@ w + v® dw = 0, i.e. dw = 0 holds. More-
over, d*f, = (d*w)v and thus 0 = P(v, t,) = (@*w)v is valid. It fol-
lows that w is a harmonic 1-form on M and f is harmonic. Simple
calculation shows that ¥(»,?) = 0 and so » is a harmonic variation.
A result of J. H. Sampson [10] completes the proof of this case.
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(b) Suppose that there exists a nonharmonic map f,. Then
T c (=/2)Z and it remains only to check the condition of harmonicity
of fo- But %/2€T if and only if ¥(v, #/2) = trace (@*fy, v>v +
-+ trace (fy, v)f,— trace {f,, v>*v = 0. Multiplying by », this equa-
tion splits into the two equations given in Theorem 3. If =/2e T
then the value of the Hessian H, on the pair (v, v) [3] reduces to the
following:

H,(0, ) = o] trace {(fu, 03*— Ifu1%} vol (M).
M

Thus, if the Morse index of f were zero then rank f<1 would yield
a contradiction to our assumption T == R.

4. Manifolds of harmonic maps.

Let M be a compact oriented Riemannian manifold and M’ a
complete Riemannian manifold of constant curvature o= 0. Denote
by Harm (M, M') the set of all harmonic maps f: M — M'. If fe
€ Harm (M, M’) then, as in Sec. 2, define V(f) = {veC(F)p is a
harmonic variation of f}. Thus U(f) is contained in the finite dimen-
gional vector space of Jacobi fields along f. By Theorem 1, if
v, v’ € U(f) then v + v' € U(f) if and only if (v, v') = const on M.
Two maps f and ' in Harm (M, M') are said to be equivalent, f~ 7,
if there exist maps /o, ..., f**1 € Harm (M, M') and vectors o' € VU(f!),
=0, ..., k, such that f°=f, frt' =# and exp -v'=f*, i =0, ..., k,
hold. Clearly, ~ is an equivalence relation. If f, /' € Harm (M, M’)
are related maps then let o(f, /') denote the infimum of the numbers

k
‘zoufv‘]] for which o*e V(f*), exp' v’ = fit!, i=10,..., %k and f° =/,

{1 = §' hold.

Henceforth, let N c Harm (M, M') be a fixed equivalence class.
Clearly, ¢ is a distance function on N and thus N carries a metric
space structure. An open subset G c N is called simple if for any
f, ' € G there exists v e U(f) such that exp’-v = f' holds. (In case
when M = {point} this notion reduces to the notion of simple subsets
in the sense of [6] p. 159.) The equivalence class N c Harm (M, M’)
is said to be locally simple if any harmonic map fe N has a simple
neighbourhood in N.

The main result of this section is the following:

THEOREM 4: Let M be a compact oriented Riemannian manifold
and let N c Harm (M, 87) (or Harm (M, RP")) denote a locally simple
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equivalence class of the relation ~. Then N carries & Riemannian
manifold structure with the following properties:

(x) The distance function ¢ is induced by the Riemann struc-
ture of N,

(B) If ;€ M is a base point then the evaluation map & N — 8»
(or RP"), f — f(z,), is an isometric embedding onto a totally geo-
desic submanifold,

(y) The tangent space 7,(N) at f€ N can be identified with
U(f), in particular, V(f) is a linear space,

() Geodesics of N have the form ¢ — exp’-(tv), where v € U(f),
feN.

In the case when the codomain is nonpositively carved a result, sim-
ilar in character to our theorem above, has been proved by R. Schoen
and 8. T. Yau [11]. Namely, they showed that the space of harmonic
maps from M into M’ which are homotopic to a given map is a com-
pact connected totally geodesic snbmanifold of M'.

An immediate consequence of Theorem 4 ig the following:

COROLLARY 4: If f,f': M — 8" (or RPv) belong to the same
locally simple equivalence class and if they agree at one point then
f=1.

In what follows we assume that
N c Harm (M, 8») (or Harm (M, RPr))

is a locally simple equivalence class. The proof of Theorem 4 is based
on the following three lemmas:

LEMMA 4: 9U(f) is a linear space for any feN.

PrOOF: We verify the lemma for 8* the proof being analogous
for ERP». It is8 enough to show that v, v' € U(f) implies (v, v> =
=const. on M. Let Uc N be a simple neighbourhood of f and choose
£€>0 such that h = exp’-(ev) and A'= exp’-(ev’) belong to U and
lvl + |v'| <m/e. Because U is simple there exists w e U(k) with
exp’-w = h'. Then g(h, b')<e(f, h) + o(f, ¥')<e|o| + £]v'| <  implies
that h(z) and h'(z) are not antipodal points for all ze M and hence,
by an appropriate choice of w, we may suppose that Jw| < 7. Thus,
for fixed xe M, the geodesic triangle defined by ¢ —» exp’ - (tev,),
t — exp’-(tev,) and t — exp’-(tw.), 0<t<1, is contained in a totally
geodesic 2-dimensional submanifold of 8* which can be identified
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with 82 c 8». By the law of cosines in spherical trigonometry, <v,, v,»
is uniquely determined by the lengths |v.|, |v,| and [w.| of the
gides of the geodesic triangle. Theorem 1 implies that the scalars
loll, [*'] and ||w| are constant on M and hence (v, ') = const
which accomplishes the proof.

By the previous lemma 9U(f) inherits a scalar product <, >, from
the metric tensor of M'.

Moreover, if dim U(f) = d and {», ..., %} c V(f) is an orthonormal
base then the vectors {v}, ..., o5} C Tyn(8") (or Ty (RP")) are line-
arly independent for all z € M. Especially, the Stiefel-Whitney classes
Wo_aya( T(RP™)), ..., wa(T(RP*) must be in the kernel of the homo-
morphism f*: H¥RP*, Z;) -~ H¥M; Z,).

LEMMA B: Let v be a harmonic variation of a map f: M — 8
(or RP»). Then 7,[v]: V(f) - U(f,), f: = exp’- (i), is an isomorphism
of Euclidean vector spaces.

ProoF: We need only to show that if we U(f) then z,[v](w) e
€V(f,) holds. Without loss of generality we may assume that v

and w are orthonormal. Because |7.[v)w| = |w| = const on M, by
Theorem 1, we have to prove that the equations

1) V(z,[v])(w)) = trace {R’((f,)*, -r‘['v](w))(f,)*} ;

(2) trace <(ft)*1 d("t[’”](’“’))) =0,

are patisfied. At first we note that
trace {<f*7 ){fuy w + <dv, dw)} =0

is valid since
0 = Vv, w) = (Vv, w) -+ 2 trace {dv, dw) + (v, Vw) =
= 2 trace {(R’(f*, ) fxy W) + <{dv, dw)} &

= 2 trace {(fx, vD<fs, w) + {dv, dw)}
holds.
In order to prove (1), write 7/-[v] = 7}-. Then, applying Lemma 1,
we have

(vt V2 7,)(w) = trace {(z*:V 7,)(z*- V-7 ) w} = ]
= 0.V-7)(Vio— B( [Pu(s) ds, A
trace{(t T)( w (JP (8) v)w)}

= V2w — trace {V(R' (jp,(s) o 'v) w)} K

—trace {R’( fP,(s) ds, fv) (V'w — R ( fP,,(s) ds, ’0) w)} ’
0 0
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where

Py(t) = fx, )0 + cost (fx— (fx, 0)0) + sintdo.
By straightforward calculation we obtain

(¢ V2-7,)(w) — trace {R'(P,(1), w) P,()} =
= 2(1 — cost) trace {{fy, VD{fx, w)v— {dv, dw)v} =0

which completes the proof of (1). Turning to the proof of (2) we
have

trace {(f.)x, d(7/(w))) = trace (P(t), (v'-V-7,)(w)> =
= trace {(P,(1), dw)— (P.(1), B f Py(s) ds, o) w)} =
0

= trace (P,(t), dw) + (F(v, 1), wy — (@*Py(t), wy =
= trace {V{P,(t), w)} = trace {V(cost {fx, w) + sin t{dv, w))} =
= sint (V20, w) + sin ¢ trace {dv, dw) =

= gin ¢ trace {{fy, VD s, W) — {dv, dw)} =0

which completes the proof.

Lemva 6: Let fe Harm (M, 87) (or Harm (M, RP")) and let
v, w € V(f) be linearly independent vectors with |v|, [w| < 27 (or =).
Then there exists # € V(exp'-v) such that exp-u — exp-w and u is
unique up to an integer multiple of 2z (or =).

PrOOF: We verify the statement for S* the proof being analogous
for RP». The vectors v, and w, are linearly independent in 7,(8")
for all # € M and hence they span a subbundle & c f*(T(8")) of rank 2.
Thus, for fixed ze M, exp’ (§)c 8" is a totally geodesic submani-
fold which can be indentified with §2c §*. The linear independence
of the vectors », and w, implies that exp’ (v,) and exp’ (w,) are not
antipodal points and so there exists a unique vector u,e T orp(0.)(8?)
such that exp’(u.) = exp’ (w,) and t — exp’(tu.), t€[0, 1] is a mini-
miging geodesic segment between exp’(v,) and exp’(w,). Clearly, the
vectors u., x € M, compose a vector field » along exp’v such that
exp’-w = exp’-w is satisfied. The linearly independent vectors z,[v]-
*(v:) and 7,[v](w,) are tangent to St and hence there exist numbers
1o, 8o € R (mod 27) such that u, = £, 7,[v](v,) + 8 7. [v}(w,) holds. Be-
cause the scalars |v|, |w| and (v, w) are constant on M the num-
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bers ¢, and 8, do not depend on the choice of . Thus, by Lemma 5,
% € V(exp'-v) which completes the proof. An immediate conse-
quence of Lemma 6 is the following:

COROLLARY 5: Let f, f'e N with o(f, f') <z (or m/2). Then there
exists a unique vector » e V(f) with exp’-v = f' such that |v] = p-
*{f, f') holds.

ProoF oF THEOREM 4: At first we consider the case
N c Harm (M, 87) .

Let fe N be fixed and define exp,: V(f) - N by exp,(v) = exp’-v,
ve V(f). Lemma 6 easily implies that the map exp,: V(f) —» N is
continuous. For a>0 let B,= {ve V(f)||v| <a}. Then, for
0 < a < 7, the restriction exp, |B, — N is injective. By Corollary b5,
exp, (B,) is nothing but the open metric ball around f with radius a.
It follows that exp, |B,: B, - N i8 a topological embedding onto an
open neighbourhood of € N and hence N is a topological manifold.
Moreover, the family {(exp,(B.), exp;')[fe N, 0<a<m} clearly com-
pose a C=-atlas and so N is a differentiable manifold. (Because N
is metrizable it satisfies the second axiom of countability as well.)
If veV(f), fe N, then defining

o(p) = L,u(e_x;’ (o)) -’

where y is a scalar on N, the vector space V(f) is identified with the
tangent space T,N). Now let 2,€ M be a base point and consider
the evaluation map &: N eS8 &(f) = f(z,), feN. The map & is
clearly differentiable and &*(v) = v,, is valid for v € V(f). Especially,
rank § = d (= dim N) and hence §: N — 8 is an immersion. Let
{1 € N be fixed. Then exp’ 8,,,(V(f))) c 8* is a totally geodesic subman-
ifold which can be identified with 8%c 8. We claim that im § = 8¢
holds. Clearly, 8écim § Let j'e N and choose maps f°, ..., f*' €
€ Harm (M, 87) and vectors v'e V(f*), ¢=0, ...,k with f°=Ff and
/¥t = f' such that exp’'-o! = fi+t holds. By induction on ¢ we prove
that (@) € 8% and exp’(8,(V(f*)) c 8¢ are valid.

The statement is clear for 4 = 0. Suppose that fi(z,) € 8¢ and
exp’ (84(V(f*)) c 8% hold for gome i<k. Then, by the induction hy-
pothesis f*+1(xz,) = exp’ (v} )= exp’ (&4(v*)) c 85. Moreover, by Lemma 5,
&«(V(f+Y)) is the image of 8,(V(f*)) under the parallel transport along
the geodesic segment ¢ — exp’(tv;), t€[0,1], which lies entirely
in §¢. Hence §,(V(f**) is tangent to 8¢, i.e. exp’ (E*(V(f*1))c 82
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which completes the induction step. Thus §: N — 8¢ is a local
diffeomorphism and so the manifold N inherits a Riemann struc-
ture from that of 84 such that & is a local isometry. With this
Riemann structure the geodesics of N have the form ¢— exp’ (iv), where
ve V(f), /€ N. Especially, N is a complete Riemannian manifold of
constant curvature 1 and N is compact. It follows that &: N — §¢
is a Riemann covering and hence a diffeomorphism. It is clear from
our construction that the distance function ¢ is induced by the
Riemann structure of N, ie. off, f') = r(&(f), &(f')) holds for every
f, ' € N, where r denotes the canonical distance function of §%. Thus
Theorem 4 is proved in the first case.

Second, consider the case N ¢ Harm (M, RP"). Analogously to the
proof above we can conclude that &§: N — RP¢4 is a Riemann cov-
ering. Suppose that N is a double cover of RBP4 and let f, f'€ N be
different maps with &(f) = &(/'). Choose » € V(f) with exp(v) ={
such that y: [0,1] - N, y(t) = exp(iv), t€[0,1], is & minimising
geodesic segment connecting f and f'. Then &-y is a closed geodesic
with length =, i.e. f = f' which is a contradiction. Thus §: N — RP¢
is a diffeomorphism and the proof can be completed analogously to
the first case.

5. Harmonic maps into the complex projective space.

This section is devoted to the description of harmonic variations
of maps into CP»= complex n-dimensional projective space endowed
with the Fubini-Study metric of constant holomorphic sectional cur-
vature 4. Let f: M — CP* be a map and v € C(F). Using the expli-
cite expression of the curvature tensor B’ of OPr [8] the Jacobi equa-
tion (A) of Sec. 2 becomes

dP(t)

(A") + (V]2 Po(t) — (Po(t), v> v + 3CPy(t), D Iv =10,

where J denotes the complex structure of OP». The solution of the
initial value problem (A’) with (B) has the form

v v Jo\ v
Py(t)= tdv, o ) oo 20001£) { Fay 70 Y 7
® (’*+ 2 IIvII>IIvII+°°B( Il ’(’* uvu>uwu+
sin 2|'v||t) Jv

+ 50 (4o ) o oo ot ~(to o) o1~

~(te ||vu>||3:7|)+gujlr"i("”‘<d”’ﬁ>n‘:ﬂ ( ’||33|>T“

(if v.= 0 then we take P,(t) = f, + tdv at z€ M).
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Our first result gives a complete description of harmonic varia-
tions of a given map f: M — CP» in terms of the differential f, and
the vector fields » and Jv along f.

THEOREM 5: Let f: M — CP» be a harmonic map. A vector
field v along f is a harmonic variation if and only if |[v| = const and
the following equations are satisfied:

(i) trace {<fu) 2> fx— lfull®v + 3<fs, 30> s} = V2o

(or equivalently, v is a Jacobi field along f),
(ii) trace {2<{fy, Jv> I dv + {f4, I dv) Jv + {dv, Jv) 3f,} =0,
(iii) trace {2(fx, JvD2v— 2|v|2%(fs, J0) Ifs +

+ 2{f s VD{fx, 0D Jv + {dv, J0) I dv} = 0,

(iv) trace {<f, v)<dv, Iv) + |v[*fs, I dv)} =0,
(v) trace (fy, Jv){dv, Jv) =0,
(vi) trace {fy,dv> =0.

Before turning to the proof of Theorem 5 we show that it is enough
to restrict ourselves to variations with constant norm.

LEMMA 7: If v is a harmonic variation of the map f: M — CP»
then |v| = const on M.

ProOF: Denote K c M the complement of the zero locus of v.
Then, by a simple calculation, we have on the open set K:

(@*P(t), ) =t <d* {(d'v, ﬁ) le—ll}’ 'v> 4 terms bounded in ¢
and

¢
(trace R (fP,(s) ds, 'v) P,(t), v) = terms bounded in ¢.
[}

Hence, if v is a harmonic variation then (¥(v,%),v) =0 for allte R,
i.e.

<d* {(dv, ﬁ) "_ZH}’ 'v> = —{V2p, v) 4 trace {(dv, ﬁ)a— lldo)) *} =0

is satisfied on K. Thus the equation

2 }2(<V*0, v> + trace |dv|*) = trace {dv, v)*
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holds on M. Using this equation it follows that

Ve(|v]2) = 2(<V?v, v) + trace |dv[2) >0
is valid and compactness of M completes the proof.

COROLLARY 6: Let f: M — CP" be a harmonic map with dim M =
= 2n. If there exists a nonzero harmonic variation v then the degree
of the map f is zero.

Now let v be & vector field along f: M — CP» with |»| = 1. Then,
by a long calculation, we obtain

Y(v, 1) = —sint Vip 4 (sin t—inz(%) {V, Iv) Jv 4-

-} trace {— 2 sin?i(f,, dvd v 4 2 sin® i{f,, Jdv) Jv +

- 4 8in?¢ ¢08 i{fy, Jv)> Jdv 4 2 sin®¢{dv, Jv) Jdv 4
+ 2 8in (28)(1 — eost){f*, vD{f*, D> Jv +

+ (4 sin? cos?? —sin (4¢) + sin2(2t) —sin t) ey D20 +

+ (cos (42) + 6 cos t 8in? t — cos (2¢) )<fy, Jv)<dv, Jv)v -+
+ sin#(4 cos®?{ —1)<{fy, 0> Jf, + 2 8in2#(1 —cos ?)-
*faey D40, 0> Jv 4 2 8in? ¢(1 — cos t){dv, Jv)%v +

—+ 2 sin2? cos t{dv, Jv) If, + sin tf, v) fu +

+ Bin t(cos t —1){fy, v)20 _sinT(.‘Zt) [|lf«]2 + sin ¢(cos t — 1)||d'v||"v} .

ProOF oF THEOREM 5: By Lemma 7, without loss of generality
we may assume that || =1 on M. Using the formula of ¥(v, t) above
a simple calculation shows that equations (i)-(vi) imply ¥(v,t) = 0
for all ¢t € R, Instead of proving the converse statement by computing
the Taylor coefficients of ¥(v, 1) in ¢t we verify a stronger assertion
as follows:

THEOREM 6: Let » be a vector field along the harmonic map
f: M — CP» with |v] =1 and suppose that there exists distinet
numbers %y, s,€ R with 0 <1, s, <n/6 such that f_,, f, , f—,,, /s, aT€
harmonie. Then equations (i)-(vi) are satisfied and hence o is a har-
monie variation.
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Proor: By the formula of ¥(v,t) above we have
%(TW, 1) + !F('D, —1), )=
= trace {— 2 sin ify, dv) + (cos (41) — cos (22))<f*, Jv){dv, o)} .

The function u: (0, n/6) — R defined by

)= sint 6

cos (48) — cos (2t)’ o (O, n) ’
is strietly decreasing and so, substituting ¢ = ¢, and ¢ = 8,, we obtain
trace (fy, dv){dv, Jv) = trace {fx, dv) =0,
i.e. equations (v) and (vi) are satisfied. Similarly
}<F v, ty) + ¥(o, — t), Jo) =
= 2 sin®¢, trace {{fy, v){dv, Iv) + {fy, Jdvd} =0

which implies equation (iv). Using these equations, we have

%(qj('”’ ) + ¥lo,— t)) ==
= 2 sin®¢ cos  trace {2{fx, JvD> I dv + (fy, J dv> v 4 <{dv, ) 3f,}

and hence (ii) is satisfied. On the other hand we have

sin (21)
2

— <dv, J032) + {fuy 02— || a2 —8<fuy J0)2 4 o]}

% P, 1) —P(v, —t), v) = trace {2 sin® #(4<fy, Jv)*—

which yields the equations

trace {(f*, v)*— [[f*|*— 3¢f*, Jv)*+ |dv|%} = 0

and
trace {4(f*, Jv)2— (dv, )%} =0.
Similarly
1 in (2¢
5 CE, t)—P(o,— ), oy = 2D,

-trace {— (V0, 30} + 4{fx, ©){fu, ID} = 0.
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Using these equations, we have

}(Pw,t)— ¥, — 1)) = —sint Voo 4
+ trace {sin #(<fx, o> fx— Ifal*o + 3<fy, 303 fu) +
+ 2 8in® 4(2{f, D20 — 2{fx, 0D Ify +
+ 2{fx, ) <{fx, W) Jv + <dv, Iv) I do)}

and hence (i) and (iii) are satisfied.

Thus Theorems 5 and 6 are proved.

In order to simplify equations (i)-(vi) of Theorem 5 we restrict
ourselves to a certain class of vector fields. A vector field along f
is said to be infinitesimally real if for every pair of linearly inde-
pendent tangent vectors v, and Vy v in Ty, (CP"), where X, T,*
*(CPn), the plane &, spanned by o, and Vx_v is real, i.e. the sectional
curvature of £, is 1. Obviously, » is infinitesimally real if and only
it {dv, Jv) = 0.

COROLLARY 7: Let f: M — CPn be harmonic and » be an infini-
tesimally real vector field along f. Then » is a harmonic variation
if and only if ||v]| = const, v is a Jacobi field along f, {fs, Jv) =0
and trace (f,, dv) = 0 are valid.

ProoF: RStraightforward, reducing the system (i)-(vi) above.
Our next result gives necessary conditions for the existence of
harmonic variations.

THEOREM 7: Let M be an almost Hermitian manifold and f: M —
— OP" be a holomorphic map. If there exists an infinitesimally real
harmonic variation » (s« 0) of f then rank f<2n— 2. If f is an em-
bedding then rank f<2n— 4 and, moreover, if M is almost Kihler
then rank f< .

ProoF: Corollary 7 implies that ||o] = const. and (f,, Jvd> = 0.
Because f is holomorphic we also have {f,, »> — 0 and thus the first
assertion is clear.

Assume that f is an embedding with rank f = 2n — 2. Then the
normal bundle » of f is a complex line bundle over M since » and Jv
are nowhere zero sections of v. As a complex hypersurface M defines
a divisor and thus a complex vector bundle £ over M. By the first
adjunction formula [5] the vector bundle »*X) £ is trivial and hence
the first Chern classes ¢,(v) and ¢,(§) are equal, i.e. ¢(£) = 0. On the
other hand, the fundamental class [M] € H,, ,(OP*; Z) is nonzero [5]

]
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and by Poincaré duality it corresponds to ¢,(§) = 0 which is a con-
tradiction.

Finally, suppose that f: M — OP* is an embedding of the Kihler
manifold M into CP* with rank f>u. If » is a nonzero harmonic
variation of the holomorphic map f: M — CP» then f,: M — CP» is
holomorphic for all te R [3]. If |t| is sufficiently small then f,: M —
— CPr is also an embedding and since |v]| = const. the complex sub-
manifolds (M) and f,(M) are disjoint. Indicate by « and a, the Poincaré
duals of the fundamental classes [f(M)] and [f.(M)] in H,,(CP*; Z),
resp., where m — dim, M. Then «, a, € H**—2=(CP"; Z) are nontrivial
and, by 4n— 4m<2n, the product o-a, € Hé»4»(CP"; Z) is also non-
trivial. On the other hand, disjointness of f(M) and f,(M) implies
o+, = 0 which is a contradiction.

As a final result we give a geometric description of parallel varia-
tions as follows:

TeEEOREM 8: Let v be a parallel vector field along a harmonic
map f: M — OP» with |v]| = 1. Then the Morse index of f is strictly
positive unless f is constant. Furthermore:

(a) If there exists 0 <1?, < =/4 such that f, is harmonic then
v is a harmonic variation of f and in this case either f is constant
or { maps onto a closed geodesic ¥ and », being tangent to y, rotates
the map f along y. (Especially if M is an almost Hermitian manifold
and f is holomorphic then § must be constant.)

(b) If b)(M) = 0 and there exists 0 < f,<z/4¢ such that f, is
harmonic then f is constant.

(6) If {fy, 3> = 0 and » is not a harmonic variation of f then
T = {teR|f, is harmonic}cgz

and n/2e T if and only if trace (f,, v)f, = trace {f,, v>*v holds.

ProoFr: Assume that the Morse index of f is zero. Then
H,(3v, o) = — [trace {Jo)* Iful*— <fa, J0* +3<fs, v)%} vl (M) = 0
M
implies that {f4,?)> = 0 is valid. Using this equation, we have

H,(v, v) = — [trace {[o]* [fu]*+ 3<fx, 3053 vol (M) =0
Af

and hence f must be constant.
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If v is a parallel vector field along f with |v|| = 1 then the for-
mula of ¥(v,t) reduces to the following:
¥(v, t) = sin ¢ trace {4 cos 1 — OB t){fy, VD5, 0> Jv +
+ (— 8 cos?t 4 4 cos?t 4 5 eos t— 1)<{f,, Jvdev 4+
+ (4 cos?t — 1){fyy 30D I+ fay D fu +
+ (eo8 t — 1)<fy, v)20— cos t|f[2v} .

(a) Suppose that f, is harmonic for some 0 <t < z/2. By the
formula of ¥(v,t) above we have

[0, 10,03 vor can = 2280 (feraco fctay 032+ <ty 3030— 1119
M M

vol (M) — 4 cos (24,) | trace {f*, Jv)>2vol (M)) =0
M

and hence {f,, Jv) = 0 and trace {<{fy, v>*— |[f«|?} = 0. By the last
equality, f4 = *&® w, where w is a harmonic 1-form on M. It follows
that ¥(v, t) = 0 for all te R, i.e. v is a harmonic variation. The rest
of case (a) follows from a result of J. H. Sampson [10].

(b) By the previous case we may assume that f,,, is harmonic.
Then

<y’(”7 ?74!), '0> . %trace {<f*’ 2+ (fuy J0DE— "f*"’a} =0

which implies that f, = @ w + ® w', where w and ' are har-
monic 1-forms on M. Thus b,(M) = 0 implies that f is constant.

() If f,, is harmonic for some i,¢ (n/2)Z then the equation
<¥(v, t,), v> = 0 implies that » is a harmonic variation. Thus T c
C (n/2)Z and the rest is clear.

Testo pervenuto il 15 aprile 1981.
Bozze licenziate il 2 dicembre 1981.
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