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Abstract

For a convex body K in a Euclidean vector space X of dimension n (≥ 2),
we define two sub-arithmetic monotonic sequences {σK,k}k≥1 and {σoK,k}k≥1

of functions on the interior of K. The k-th members are “mean Minkowski
measures in dimension k” which are pointwise dual: σoK,k(z) = σKz ,k(z), where
z ∈ intK, and Kz is the dual (polar) of K with respect to z. They are measures
of (anti-)symmetry of K in the following sense:

1 ≤ σK,k(z), σoK,k(z) ≤
k + 1

2
.
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The lower bound is attained iff K has a k-dimensional simplicial slice or sim-
plicial projection. The upper bound is attained iff K is symmetric with respect
to z. In 1953 Klee showed that the lower bound m∗K > n− 1 on the Minkowski
measure of K implies that there are n+ 1 affine diameters meeting at a critical
point z∗ ∈ K. In 1963 Grünbaum conjectured the existence of such a point in
the interior of any convex body (without any conditions). While this conjec-
ture remains open (and difficult), as a byproduct of our study of the dual mean
Minkowski measures, we show that

n

m∗K + 1
≤ σoK,n−1(z∗)

always holds, and for sharp inequality Grünbaum’s conjecture is valid.

1 Preliminaries and Statement of Results

Let X be an n-dimensional Euclidean vector space (n ≥ 2) with scalar product 〈·, ·〉
and distance function d. We consider a convex body K ⊂ X , a compact convex set
in X with non-empty interior. Let ∂K denote the boundary of K. Given an interior
point z ∈ intK we consider all the chords of K passing through z. For x ∈ ∂K, let
λK(x, z) denote the ratio into which z divides the chord of K starting at x, passing
through z, and ending up at the opposite xo ∈ ∂K of x (with respect to z). This
defines the distortion function λK : ∂K × intK → R:

λK(x, z) =
d(x, z)

d(xo, z)
, x ∈ ∂K, z ∈ intK.

For the involution of ∂K given by x 7→ xo (with (xo)o = x), we have λK(xo, z) =
1/λK(x, z), x ∈ ∂K.
The (maximum) Minkowski ratio of K at z is defined as

mK(z) = sup
x∈∂K

λK(x, z) ≥ 1.

(Due to compactness of K and continuity of the distortion function λK [18, Lemma
1], the supremum is attained. This is also the case for all infima and suprema that
we encounter in this paper.)

Let δK denote the (compact) space of all hyperplanes supporting K. (Associating
to each H ∈ δK the unit normal that points inward K, say, gives rise to a topological
equivalence of δK and the unit sphere S ⊂ X .) For H ∈ δK, we define the ratio
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ρK(H, z) = d(H, z)/d(Ho, z), where Ho ∈ δK is the (unique) parallel opposite of H
such thatK is betweenH andHo. This gives rise to the function ρK : δK×intK → R.
For the involution of δK given byH 7→ Ho,H ∈ δK, we have ρK(Ho, z) = 1/ρK(H, z),
H ∈ δK.
It is well-known that

mK(z) = sup
x∈∂K

λK(x, z) = sup
H∈δK

ρK(H, z), z ∈ intK. (1)

(See [5]. It is customary to define ρK(H, z) for a hyperplane H containing z as
the ratio ≥ 1 that H divides the distance between the two supporting hyperplanes
H′,H′′ ∈ δK that are parallel to H. In our study we need more control of the choice
of the supporting hyperplane, henceforth we altered this definition accordingly. Since
we are taking suprema these two definitions are equivalent.)

A technically more convenient reformulation of this second concept is as follows.
Let aff = aff(X ) denote the (n + 1)-dimensional vector space of affine functionals
f : X → R. We call f ∈ aff normalized for K if f(K) = [0, 1], that is, the zero-
sets H = {u | f(u) = 0} and Ho = {u | 1 − f(u) = 0} are two parallel hyperplanes
supporting and enclosing K. We let affK ⊂ aff denote the (compact) subspace of
affine functionals normalized for K. (Associating to each f ∈ affK the single zero-
set H as above gives rise to a topological equivalence of affK and δK. Indeed, any
H ∈ δK and its opposite Ho uniquely define a normalized affine functional with the
respective zero-sets as above.) Note that affK has the obvious involution given by
f 7→ 1− f , f ∈ affK .
Using the notations above, (1) gives

inf
f∈affK

f(z) = inf
f∈affK

(1− f(z)) =
1

supH∈δK ρK(H, z) + 1
=

1

mK(z) + 1
, z ∈ intK. (2)

The two aspects of the Minkowski ratio above can be interpreted in terms of
duality between the convex body K and its dual (also called polar) Kz with respect
to the given interior point z ∈ intK. (For the definition of the dual and its properties,
see the next section. Note that when dealing with duality we will frequently use the
bipolar theorem (Kz)z = K without explicit mention; [4, Chapter 1.9] or [14, Theorem
1.6.1].)
First, as a technical tool, we will introduce and study the “musical equivalencies”

[ = [K,z : ∂K → affKz and ] = ]K,z : affK → ∂Kz.

(For simplicity, we will suppress the subscripts whenever no confusion arises. In
Riemannian geometry the introduction of a Riemannian metric on a manifold gives
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rise to “musical isomorphisms” between the tangent bundle and its dual. Due to the
descriptive nature of this concept and analogy we took the liberty to borrow this term
for our setting.) The musical equivalencies satisfy

(xo)[ = 1− x[ and (f ])o = (1− f)], x ∈ ∂K, f ∈ aff K. (3)

In addition, as the name suggests, they are inverses of each other:

]Kz ,z ◦ [K,z = id∂K and [Kz ,z ◦ ]K,z = idaffK
. (4)

These formulas (applied to the dual pair K and Kz) imply that the musical equiva-
lencies are actually homeomorphisms of the respective spaces.
The following formulas show that the two aspects of Minkowski ratios are dual con-
structions applied to K and its dual Kz:

x[(z) =
1

λK(x, z) + 1
, x ∈ ∂K, z ∈ intK, (5)

and

f(z) =
1

λKz(f ], z) + 1
, f ∈ affK , z ∈ intK. (6)

Taking the infima on the respective sets in (5) - (6) and using (2), we obtain

inf
x∈∂K

x[(z) =
1

mK(z) + 1
= inf

f∈affK

f(z) =
1

mKz(z) + 1
, z ∈ intK.

This gives
mK(z) = mKz(z), z ∈ intK. (7)

The Minkowski measure of K is defined as

m∗K = inf
z∈intK

m(z).

The set of interior points where this infimum is attained is called the critical set

K∗ = {z∗ ∈ intK |mK(z∗) = m∗K}. (8)

The critical set K∗ ⊂ K is compact and convex, and we have Klee’s inequality

(1 ≤) m∗K + dimK∗ ≤ n

improving the classical Minkowski-Radon inequality (in which the dimension of the
critical set is absent). (See [10].) Clearly, m∗K = 1 iff K is symmetric with respect to
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then unique regular point. It is also straightforward to show that the upper bound is
attained for simplices. Conversely, Minkowski and Radon also proved that m∗K = n
implies that K is a simplex.
For z∗ ∈ K∗ critical, by (7), we have

m∗K = mK(z∗) = mKz∗ (z∗) ≥ m∗Kz∗ .

Whether equality holds, that is z∗ ∈ K∗ is also a critical point of the dual Kz∗ , seems
to be a difficult problem in general.

Recall that a chord [x, xo] of K is an affine diameter if there are parallel supporting
hyperplanes H and Ho of K at the endpoints of the chord, that is x ∈ H and xo ∈ Ho.
(For a general survey on affine diameters and related problems, see [15, 16].) As
discussed above, we describe these hyperplanes as the zero-sets of a normalized affine
functional f ∈ affK , that is we have H = {u ∈ X | f(u) = 0} and Ho = {u ∈
X | 1− f(u) = 0}. Under the musical equivalencies, affine diameters of K correspond
to affine diameters of Kz in the sense that if [x, xo] is an affine diameter of K with
parallel supporting hyperplanes given by f ∈ affK then [f ], (f ])o] = [f ], (1 − f)]] is
an affine diameter of Kz with parallel supporting hyperplanes given by x[ ∈ affKz .
(For the proof, see Section 2.)

We now introduce the sequence {σK,k}k≥1 of mean Minkowski measures of K.
(We give here a concise summary; for details, see [17, 18].) The k-th measure σK,k :
intK → R, k ≥ 1, is a function on the interior of K defined as follows. First, a
(point) k-configuration of K with respect to z is a multi-set {x0, . . . , xk} ⊂ ∂K (with
repetition allowed) such that the convex hull [x0, . . . , xk] contains z. (We use square
brackets to indicate convex hull rather than “conv.”) With this we define

σK,k(z) = inf
{x0,...,xk}∈CK,k(z)

k∑
i=0

1

λK(xi, z) + 1
, z ∈ intK, (9)

where CK,k(z) denotes the set of all k-configurations of K (with respect to z).
Algebraically, σK,k is a “k-average” of the rescaled distortion, and, as we will see
below, geometrically σK,k(z) measures how far the k-dimensional slices of K across z
are from a k-simplex.
A k-configuration {x0, . . . , xk} ∈ CK,k(z) at which the infimum in (9) is attained is
called minimizing, or simply minimal. Since CK,k(z) inherits a compact topology from
that of ∂K and the distortion is continuous, minimal configurations always exist. (As
examples show, they are by no means unique.)
For k = 1, a 1-configuration of z is an opposite pair of points {x0, x1} ⊂ ∂K, x1 = xo0.
Since λK(xo0, z) = 1/λK(x0, z), we have σK,1(z) = 1, z ∈ intK.
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Since a (minimal) k-configuration can always be extended to a (k+l)-configuration
by adding l copies of a boundary point at which the distortion λK(·, z) attains its
maximum mK(z), we have sub-arithmeticity:

σK,k+l(z) ≤ σK,k(z) +
l

mK(z) + 1
, z ∈ intK, k, l ≥ 1. (10)

By Carathéodory’s theorem, for k > n, a k-configuration always contains an n-
configuration. In addition, any subconfiguration of a minimal configuration is mini-
mal, and, at the complementary configuration points, the distortion λK(·, z) attains
its maximum mK(z). We see that the sequence {σK,k(z)}k≥1 is arithmetic with dif-
ference 1/(mK(z) + 1) from the n-th term onwards.

For 1 ≤ k ≤ n, we have

σK,k(z) = inf
z∈E⊂X ,dim E=k

σK∩E,k(z), z ∈ intK, (11)

where the infimum is over affine subspaces E ⊂ X of dimension k which contain z.
This holds because the affine span of any k-configuration {x0, . . . , xk} ∈ CK,k(z) is
contained in an affine subspace E(3 z) of dimension k; therefore the infimum in (9) can
first be taken for configurations that are contained in a specific E , yielding σK∩E,k(z),
and then for all k-dimensional affine subspaces E (which contain z) as in (11).

The mean Minkowski measures are measures of of symmetry (or asymmetry for
some authors) in the following sense:

1 ≤ σK,k(z) ≤ k + 1

2
, z ∈ intK. (12)

(For measures of symmetry in general, see the seminal work of Grünbaum [5].) As-
suming k ≥ 2, the upper bound is attained iff K is symmetric with respect to z. For
the lower bound, if, for some k ≥ 1, σK,k(z) = 1 at z ∈ intK then k ≤ n, and K has
a k-dimensional simplicial intersection across z, that is there exists a k-dimensional
affine subspace E ⊂ X such that K ∩ E is a k -simplex (and consequently σK,k = 1
identically on K ∩ E).

The functions σK,k : intK → R, k ≥ 1, are continuous on intK and extend
continuously to ∂K as

lim
d(z,∂K)→0

σK,k(z) = 1. (13)

The limiting behavior in (13) follows from sub-arithmeticity in (10) (k = 1 and
l = k− 1 and σK,1(z) = 1), and the lower estimate in (12). (For a different proof, see
Theorem D/(b) in [17].)
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The sequence {σK,k(z)}k≥1 is super-additive:

σK,k+l(z)− σK,k(z) ≥ σK,l(z)− σK,1(z), z ∈ intK, k, l ≥ 1. (14)

In particular (l = 1), the sequence {σK,k(z)}k≥1 is monotonic: σK,k(z) ≤ σK,k+1(z),
k ≥ 1.

Finally, note the obvious lower bound

k + 1

mK(z) + 1
≤ σK,k(z), z ∈ intK, k ≥ 1. (15)

The main technical tool of the present paper is the “dual construction.” Let k ≥
1. First, a dual (or supporting) k-configuration is a multi-set {f0, . . . , fn} ⊂ affK
(repetition allowed) such that the intersection

k⋂
i=0

{u ∈ X | fi(u) ≤ 0} = ∅. (16)

With this, the k-th dual mean Minkowski measure σoK,k : intK → R is defined as

σoK,k(z) = inf
{f0,...,fk}∈Co

K,k

k∑
i=0

fi(z), z ∈ intK, (17)

where CoK,k denotes the set of all dual k-configurations of z.
The dual mean Minkowski measures have been introduced in [6] along with detailed
proofs of their arithmetic properties and extrema.
A dual k-configuration {f0, . . . , fk} ∈ CoK,k at which the infimum in (17) is attained
is called minimizing or minimal for short. Since CoK,k(z) inherits a compact topology
from that of δK and the sum in (17) is continuous with respect to (f0, . . . , fk) ∈
(affK)k+1, minimal configurations always exist.
For k = 1, a dual 1-configuration of any z ∈ intK is an opposite pair of affine
functionals {f0, f1} ⊂ affK , f1 = 1− f0, and we have σoK,1 = 1 identically on intK.

Note, by (2), the obvious lower bound

k + 1

mK(z) + 1
≤ σoK,k(z), z ∈ intK, k ≥ 1. (18)

The first and most obvious property of the dual mean Minkowski measures is
that, being infima of affine functions, σoK,k : intK → R, k ≥ 1, are automatically
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concave functions. This is in striking contrast with the mean Minkowski measures
σK,k : intK → R, k ≥ 1 which, albeit concave in dimension n = 2 (Theorem E
in [18]), for n ≥ 3, they, in general, fail to satisfy any concavity properties. The
following example illustrates this point.

Example 1. Let K be an n-cube, n ≥ 3. Then the function σK,n−1 is identically 1
on the complement of the (open) cross-polytope K0 inscribed in K (since the vertex
figures provide n − 1 dimensional simplicial intersections), but in the interior of K0

we have σK,n−1 > 1. Thus, σK,n−1 is not concave. A somewhat more involved argu-
ment shows that σK,n is also non-concave. (For a much more general result, see [19,
Theorem D].) As a byproduct, we see that, for the n-cube K, n ≥ 3, σK,n and σoK,n
are different functions.

The following pointwise duality is the cornerstone of our study:

Theorem 1. Let K ⊂ X be a convex body, and z ∈ intK. For k ≥ 1, we have

σoK,k(z) = σKz ,k(z), (19)

where Kz is the dual of K with respect to z.

Remark. It is important to note that on the right-hand side of (19) the mean
Minkowski measure has a double dependency on the point z; not only in the argument
but also in forming the dual Kz. For this reason duality can only be used pointwise.

The crux of the proof of Theorem 1 (Section 3) is the equivalence

{f0, . . . , fk} ∈ CoK,k ⇔ {f ]0, . . . , f
]
k} ∈ CKz ,k(z). (20)

As a byproduct of the proof, it will also follow that, under this equivalence, minimal
configurations correspond to each other.

Pointwise duality allows the properties of the mean Minkowski measures to carry
over to the dual. Replacing K with Kz in (10) and using (7) and (19), we have
sub-arithmeticity:

σoK,k+l(z) ≤ σoK,k(z) +
l

mK(z) + 1
, z ∈ intK, k, l ≥ 1. (21)

In addition, the sequence {σoK,k(z)}k≥1 is arithmetic with difference 1/(mK(z) + 1)
from the n-th term onwards.

Remark It is worthwile noting that the direct proof of arithmeticity (without the
use of duality) beyond the dimension is an application of (the contrapositive of)
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Helly’s theorem (instead of Carathéodory’s): For k > n, any dual k-configuration
(characterized by (16)) contains an n-configuration.

To state the dual version of (11), for 1 ≤ k ≤ n, we denote by Pk = PX ,k the
space of all orthogonal projections Π : X → X onto k-dimensional affine subspaces
Π(X ) = E ⊂ X . We then have

σoK,k(z) = inf
Π∈Pk

σoΠ(K),k(Π(z)), z ∈ intK. (22)

(In the infimum Π(z) can be replaced by z if we require z ∈ Π(X ) = E .)

By duality, the bounds in (12) stay the same for the dual mean Minkowski mea-
sures. To characterize the convex bodies for which the lower bound is attained is
somewhat more complex (to be expounded in Section 3). We summarize these con-
cisely in the following:

Theorem 2. Let K ⊂ X be a convex body. For k ≥ 1, we have

1 ≤ σoK,k(z) ≤ k + 1

2
, z ∈ intK. (23)

Assuming k ≥ 2, the upper bound in (23) is attained iff K is symmetric with respect
to z. If, for some k ≥ 1, σoK,k(z) = 1 at z ∈ intK then σoK,k = 1 identically on intK;
we have k ≤ n, and K has an orthogonal projection to a k-simplex.

The functions σoK,k : intK → R, k ≥ 1, are continuous on intK. As in the
non-dual case, by the lower bound in (23) along with sub-arithmeticity (k = 1 and
l = k − 1 in (21) with σoK,1 = 1), we have continuity up to the boundary via

lim
d(z,∂K)→0

σoK,k(z) = 1. (24)

Example 2. Let K be a tetrahedron (n = 3) truncated near all four vertices (by
vertex figures, say). Then σK,2 = 1 identically as K has triangular intersections
through any of its interior points. On the other hand, σoK,2 > 1 everywhere since K
has no triangular projection. We see once again that, in general, the functions σK,k
and its dual σoK,k are different.

Next, again by duality, we note super-additivity

σoK,k+l(z)− σoK,k(z) ≥ σoK,l(z)− σoK,1(z), z ∈ intK, k, l ≥ 1,

and, as a consequence, monotonicity: σoK,k(z) ≤ σoK,k+1(z), k ≥ 1.
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Most of the properties of the dual mean Minkowski measures discussed above are
consequences of the pointwise duality asserted by Theorem 2. They have, however,
additional and more refined properties showing that, as measures, they are better
adapted convex bodies than their non-dual counterparts. Our next result asserts the
striking fact that the n-th dual mean Minkowkski measure can be explicitly calculated
at the critical points of a convex body.

Theorem 3. Let K ⊂ X be a convex body and K∗ ⊂ K its critical set. For any
critical point z∗ ∈ K∗, we have

σoK,n(z∗) =
n+ 1

m∗K + 1
. (25)

The proof of Theorem 3 (Section 3) relies heavily on Klee’s delicate analysis of
the critical set and the proof of his improved Minkowski-Radon inequality.

Remark. It is natural to ask if (25) holds for the n-th (non-dual) mean Minkowski
measure σK,n. While this remains unsolved, it seems to depend on whether a critical
point z∗ ∈ K∗ is also a critical point for the dual (K)z

∗
or not. For the class of convex

bodies of constant width the answer is affirmative as follows. (For a general reference
on convex bodies of constant width, see [2].) For a convex body K of constant width
d, the critical set K∗ is a singleton, and the unique critical point z∗ is the common
center of the circumcircle SRK

(z∗) and the incircle SrK (z∗) with circumradius RK and
inradius rK . The latter can be expressed in terms of the Minkowski measure as

RK =
m∗K

m∗K + 1
d and rK =

1

m∗K + 1
d.

In particular, we have RK + rK = d and

m∗K =
RK

rK
.

(For these results, see [9], and (for some) also [1, 63] and [4, Theorem 53 and its
Corollary, p. 125].) Another classical fact is that z∗ ∈ [∂K ∩ SRK

(z∗)], so that, by
Carathéodory’s theorem, z∗ is in the convex hull of at most n + 1 boundary points
of K on the circumcircle SRK

(z∗). It follows that the circumcircle contains an n-
configuration of z∗. Thus, for a convex body K of constant width, equality holds
in (25) for the (non-dual) mean Minkowski measure σK,n.

For k = n, an n-configuration {x0, . . . , xn} ∈ CK,n(z), z ∈ intK, is called simpli-
cial if [x0, . . . , xn] is an n-simplex with z is in its interior. We let ∆K(z) ⊂ CK,n(z)
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denote the (non-compact) space of all simplicial configurations. (The concept of sim-
plicial k-configurations, 1 ≤ k ≤ n, can be defined analogously using relative interiors,
but we will not need this here.) In (9) the infimum can be restricted to ∆K(z), but
a minimizing sequence of simplicial configurations may not (sub)converge. If degen-
eracy at the infima does not occur, that is all minimal n-configurations are simplicial
then we call z ∈ intK a regular point. The set of regular points is denoted by
RK ⊂ intK.

We now turn to the dual construction (Section 4). A dual n-configuration {f0, . . . , fn} ∈
CoK,n(z) is called simplicial if the intersection

n⋂
i=0

{u ∈ X | fi(u) ≥ 0}

is an n-simplex. Using musical equivalences, this is equivalent to {f ]0, . . . , f ]n} ∈
CKz ,n(z) being simplicial. We let ∆o

K(z) ⊂ CoK,n denote the space of all simplicial
dual configurations. As before, in (17) the infimum can be restricted to ∆o

K(z), but
a minimizing sequence of simplicial dual configurations may not (sub)converge. If
all minimal dual n-configurations are simplicial then we call z ∈ intK a dual regular
point. The set of dual regular points is denoted by Ro

K ⊂ intK.
The concept of regularity meshes well with duality, and Theorem 2 gives

z ∈ Ro
K ⇔ z ∈ RKz , z ∈ intK. (26)

The significance of these concepts lie in the fact that at any regular or dual regular
points n+ 1 affine diameters meet.
This is closely related to Grünbaum’s Conjecture: Any convex body K has an interior
point z at which n+ 1 affine diameters meet. (See [5, 6.4.3, p. 254].)
A study of subconvergence of minimizing sequences then gives the following conse-
quence of Theorem 3:

Theorem 4. Let z∗ ∈ K∗ ⊂ K be as in Theorem 3. Then we have

n

m∗K + 1
≤ σoK,n−1(z∗). (27)

If strict inequality holds then z∗ ∈ Ro
K and the Grünbaum conjecture is valid for K:

There are n+ 1 affine diameters that meet at z∗.

Remark 1. Klee in [10] proved Grünbaum’s conjecture under the condition mK(z∗) >
n − 1. This is much more restrictive than (27) since σK,n−1(z∗) ≥ 1 automatically
holds.
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Remark 2. The geometric interpretation of the right-hand side in (27) follows
from (22): σoK,n−1(z∗) is the infimum of σoΠ(K),n−1(Π(z∗)) for all projections Π ∈
PK,n−1 of K to hyperplanes in X .

Remark 3. Equality holds in (27) if K is symmetric (necessarily with center z∗). In
this case the Grünbaum conjecture obviously holds.

Remark 4. Let K be a convex body of constant width. By the remark after
Theorem 3, Theorem 4 holds for the (non-dual) mean Minkowski measure. Whether
the respective inequality is strict or not depends on the (unique) critical point z∗ ∈ K∗
being regular or not. This, in turn, depends on whether z∗ is in the convex hull of
boundary points of K contained in a (proper) great sub-sphere of the circumsphere
SRK

(z∗). Note that the construction of raising the dimension for convex bodies of
constant width shows that non-regular points can well occur; see [11, Theorem 6].

Example 3. Let K = {(a, b) ∈ R2 | a2 + b2 ≤ 1, b ≥ 0} be the unit half-disk.
A simple computation shows that mK attains its minimum at the (unique) critical
point z∗ = (0,

√
2 − 1). (See also [7].) We thus have m∗K =

√
2, and, by Theorem 3,

σoK,2(z∗) = 3/(
√

2 + 1). Since σoK,1 = 1, in (27) strict inequality holds, in particular,
z∗ ∈ Ro

K . (Note that the centroid g(K) = (0, 4/3π) of K is different form z∗.)
We claim that Ro

K = int ∆, where ∆ = [x0, x−, x+] is the triangle with vertices
x0 = (0, 1) and x± = (±1, 0). Given z = (a, b) ∈ intK there may be at most three
affine diameters passing through (a, b), those that also pass through x0, x−, and x+.
This immediately gives Ro

K ⊂ int ∆. For equality, let z = (a, b) ∈ int ∆ with a ≥ 0
(by symmetry). Define f0 ∈ affK by its zero-set the first axis, and let f± ∈ affK have
its zero-set the tangent line to the unit circle at the opposite xo± with respect to z. A
simple comparison of ratios shows that f−(z) + f+(z) < 1 and f0(z) + f+(z) < 1. On
the other hand, we have 1/(mK(z) + 1) = min (f0(z), f−(z)), and we obtain

f0(z) + f−(z) + f+(z) < 1 +
1

mK(z) + 1
.

Since {f0, f−, f+} ∈ CoK(z), a dual 2-configuration, we see that z is a dual regular
point. The claim follows.

A simple consideration of the affine coordinates associated to a simplex shows
that the interior of a simplex consists of dual regular points only. (See Section 3.)
In the other extreme it is natural to expect that the interior of a symmetric convex
body does not have any dual regular points. This is indeed the case asserted by the
following:

Theorem 5. In a symmetric body K there are no dual regular points.
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Remark. The same holds for (non-dual) regular points; see [19, Theorem A]. This,
however, does not imply Theorem 5 due to the fact that the duality in Theorem 2 is
only pointwise.

Example 4. Let K = ∆× I ⊂ R3 be a prism, where ∆ ⊂ R2 is a triangle and I ⊂ R
is a closed interval. Then there are no dual regular points in the interior of K. This
shows that the converse of Theorem 5 is not true. In addition, since m∗∆ = 2, we
have m∗K = 2, and σK,2 = 1 identically (since K has the triangular projection ∆). We
see that equality holds in (27). On the other hand, through any interior points of K
there are 4 affine diameters so that Grünbaum’s conjecture holds for K. This shows
that in trying to remove the condition in (27) one needs to consider non-symmetric
convex bodies with no dual regular points. (As it was pointed out by Hammer and
Sobczyk in [8], K is a convex body with 1-dimensional critical set K∗. In addition,
for K equality holds in Klee’s inequality showing that it is sharp.)

2 Duality via the Musical Equivalencies

We define the dual of a convex body K ⊂ X with respect to an interior point z ∈ intK
as follows.
First, let K0 ⊂ X be a convex body with 0 ∈ K0, the origin in X . We define the dual
of K0 with respect to 0 as

K0
0 = {u ∈ X | sup

x∈K0

〈x, u〉 ≤ 1}. (28)

Clearly, 0 ∈ intK0, and by the bipolar theorem, we have (K0
0)0 = K0.

The general case (z ∈ intK) is reduced to this by employing translations Tv : X → X ,
v ∈ X , where Tv(u) = u+ v, u ∈ X .
We first let K0 = (Tz)

−1(K) (so that the point z ∈ intK is moved to the origin
0 ∈ intK0), and then define

Kz = Tz(K
0
0), K0 = (Tz)

−1(K). (29)

Clearly, z ∈ intKz, and, by the above, we also have (Kz)z = K.

The translations Tv : X → X , v ∈ X , act on the space of affine functionals
aff = aff(X ) by T ov : aff → aff, v ∈ X , defined by Tv

o(f) = f ◦ T−1
v , f ∈ aff. Using

the notations above, for z ∈ intK, the linear map T oz restricts to T oz : affK0 → affK ,
K0 = T−1

z (K), between the normalized affine functionals of the respective convex
bodies. (Indeed, for f0 ∈ aff K0, we have f0(K0) = T oz (f0)(K) = [0, 1].) Since,
by (29), K0

0 = T−1
z (Kz), we also have the restriction T oz : affK0

0
→ affKz .

13



In this spirit, the definition of the musical equivalencies

[K,z : ∂K → affKz and ]K,z : affK → ∂Kz

can be reduced to

[K0,0 : ∂K0 → affK0
0

and ]K0,0 : affK0 → ∂K0
0

by the formulas

[K,z = T oz ◦ [K0,0 ◦ T−1
z and ]K,z = Tz ◦ ]K0,0 ◦ (T−1

z )o. (30)

It remains to define the musical equivalencies for K0 with respect to 0 ∈ intK0

satisfying (3) - (6). For simplicity, we now suppress the subscript 0 and set K = K0

with 0 ∈ intK.
For x ∈ ∂K, we let x[ : X → R be the affine functional given by

x[(u) =
1

λK(x, 0) + 1
(1− 〈x, u〉) , u ∈ X . (31)

Evaluating this at the origin 0, (5) immediately follows.
The opposite of x ∈ ∂K (with respect to the origin 0) is xo = −x/λK(x, 0). Replacing
x by xo in (31), a simple computation gives the first formula in (3). Now a quick
look at the definition of the dual K0 in (28) shows that x[ is normalized for K0. We
conclude that the musical map [ : ∂K → affK0 is well-defined.
For f ∈ affK , we write f(u) = 〈A, u〉+a, A ∈ X and a ∈ (0, 1) (since f is normalized).
We then define

f ] = −A
a
. (32)

Since f is normalized, (28) shows that this point is on the boundary of the dual K0.
Once again, we obtain that the musical map ] : affK → ∂K0 is well-defined.
Using (28) and (32) with 1− f in place of f , we obtain

(1− f)] =
A

1− a
= (f ])o,

and the second formula in (3) follows. Since −A/a and A/(1 − a) are opposites in
K0, as a byproduct, we obtain (6).

Finally, it remains to show that the musical equivalencies are inverses of each
other, that is (4) holds. Indeed, combining (31) and (32), we obviously have (x[)] = x,
x ∈ ∂K, and the first relation in (4) follows. For the second, letting f(u) = 〈A, u〉+a
as above and using (6), we have (f ])[(u) = a(1 + 〈A, u〉/a) = f(u), u ∈ X . The
second relation in (4) also follows.
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As a final preparatory step, as stated in the previous section, we need to work out
the dual of an affine diameter. Let [x, xo] ⊂ K be an affine diameter with parallel
supporting hyperplanes H,Ho ∈ δK at both ends, that is x ∈ H and xo ∈ Ho.
As above, we let f ∈ affK be the normalized affine functional with zero sets H =
{u | f(u) = 0} and Ho = {u | 1−f(u) = 0}. We have f(x) = 0 and f(xo) = 1. Letting
0 = z and f(u) = 〈A, u〉+ a, u ∈ X , as above, we have

x[(f ]) =
1

λK(x, 0) + 1

(
1−

〈
x,−A

a

〉)
=

1

a(λK(x, 0) + 1)
f(x) = 0,

and

x[((f ])o) =
1

λK(x, 0) + 1

(
1−

〈
x,

A

1− a

〉)
=

1

(1− a)(λK(x, 0) + 1)
(1− a− 〈x,A〉) = 1,

since

f(xo) = 〈A, xo〉+ a = − 1

λK(x, 0)
〈A, x〉+ a = 1.

We see that [f ], (f ])o] is an affine diameter of the dual K0 with parallel supporting
hyperplanes x[, (xo)[ ∈ δK0 at the endpoints.
We conclude that the dual of an affine diameter configuration is also an affine diameter
configuration.

3 Proofs of Theorems 1-3

Proof of Theorem 1. We will show that σK,k(z) = σoKz ,k(z). Since (Kz)z = K,
this will imply the theorem.
We first claim that, for any {x0, . . . , xk} ⊂ ∂K, we have

z ∈ [x0, . . . , xk] ⇔
k⋂
i=0

{u ∈ X |x[i(u) ≤ 0} = ∅, (33)

where [ = [K,z : ∂K → affKz is the musical equivalence.
Without loss of generality, we may set z = 0 ∈ intK, the origin.
First, assume that 0 ∈ [x0, . . . , xk], that is we have

∑k
i=0 λixi = 0 with

∑k
i=0 λi = 1,

λi ∈ [0, 1], i = 0, . . . , k. Assume that there exists u ∈ X such that x[i(u) ≤ 0,
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i = 0, . . . , k. By (31), this means that 〈xi, u〉 ≥ 1, i = 0, . . . , k. Summing up, we
obtain

k∑
i=0

λi〈xi, u〉 =

〈
k∑
i=0

λixi, u

〉
= 0 ≥

k∑
i=0

λi = 1,

a contradiction.
Conversely, assume that 0 /∈ [x0, . . . , xk] so that 0 and the convex hull [x0, . . . , xk] can
be (strictly) separated by a hyperplane H ⊂ X . A unit normal N ∈ X of H then
satisfies 〈xi, N〉 > 0, i = 0, . . . , k. For t > 0 large enough, we then have 〈xi, tN〉 ≥ 1,
i = 0, . . . , k. Thus, tN belongs to the intersection

⋂k
i=0{u ∈ X |x[i(u) ≤ 0}. The

converse follows.
The claim just proved can be reformulated as

{x0, . . . , xk} ∈ CK,k(z) ⇔ {x[0, . . . , x[k} ∈ CoKz ,k.

Using (5), we now calculate

σK,k(0) = inf
{x0,...,xk}∈CK,k(0)

k∑
i=0

1

λK(xi, 0) + 1

= inf
{x[0,...,x[k}∈C

o
Kz,k(0)

k∑
i=0

x[i(0)

= inf
{f0,...,fk}∈Co

Kz,k(0)

k∑
i=0

fi(0) = σoKz ,k(0)

Theorem 1 follows.

Remark. Dually, for {f0, . . . , fk} ⊂ affK , we also have

k⋂
i=0

{u ∈ X | fi(u) ≤ 0} = ∅ ⇔ z ∈ [f ]0, . . . , f
]
k].

This is the same as the equivalency asserted in (20). As a byproduct of the compu-
tation above we also see that under the musical equivalencies minimal configurations
correspond to each other.

We now turn to the proof of (22). Given a dual k-configuration {f0, . . . , fk} ∈
CoK,k, let E ⊂ X be a k-dimensional affine subspace containing the duals f ]0, . . . , f

]
k ∈ X

(and, by (20), also z). We have {f0|E , . . . , fk|E} ∈ CoΠ(K),k, where Π ∈ Pk is the
orthogonal projection of X to E . The affine functionals fi, i = 0, . . . , k, are constant
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along (the fibres of) Π, and we also have
∑k

i=0 fi(z) =
∑k

i=0(fi|E)(z). We conclude
that the infimum for σoK,k(z) in (22) can first be taken for dual k-configurations in
CoΠ(K),k(Π(z)) for a given Π ∈ Pk, thus yielding σoΠ(K),k(Π(z)), and finally followed by
the infimum for all Π ∈ Pk. The claim follows.

Proof of Theorem 2. As noted previously, the bounds in (23) follow by duality
via Theorem 1.
We now consider the upper bound in (23). Let k ≥ 2, and assume that σoK,k(z) =
(k + 1)/2. Dualizing, again by Theorem 1, we have σKz ,k(z) = (k + 1)/2. Hence, Kz

is symmetric with respect to z. Since duality (with respect to the center) preserves
symmetry, we obtain that K = (Kz)z is symmetric with respect to z.
It remains to consider the lower bound in (23). Assume that, for some k ≥ 1, we have
σoK,k(z) = 1 at an interior point z ∈ intK. Since σoK,k is a concave function on intK
and, by (24), it assumes the value 1 on the boundary, we see that σoK,k = 1 identically
on K.
If k > n then, by arithmeticity and (23), we have

1 = σoK,k(z) = σoK,n(z) +
k − n

mK(z) + 1
≥ 1 +

k − n
mK(z) + 1

> 1.

This is a contradiction. Thus k ≤ n. (Alternatively, again by duality, σoK,k(z) =
σKz ,k(z) = 1 so that k ≤ n.)
For the last statement, let the infimum in (22) be attained at an orthogonal projection
Π ∈ Pk (onto a k-dimensional affine subspace), so that we have σoΠ(K),k(Π(z)) = 1.

As before, σoΠ(K),k = 1 identically on Π(K). Let z∗ be a critical point of Π(K). By

the obvious lower bound in (18) applied to the k-dimensional convex body Π(K) (and
z∗), we have

k + 1

m∗Π(K) + 1
≤ σoΠ(K),k(z

∗) = 1.

This gives k ≤ mΠ(K)(z
∗). By the Minkowski-Radon inequality, m∗Π(K) ≤ k, so that

equality holds and Π(K) is a k-simplex. Theorem 2 follows.

Example 5. An n-simplex ∆ = [x0, . . . , xn] with vertices x0, . . . , xn ∈ X possesses
a unique minimal dual n-configuration for any interior point, the affine coordinate
system {f0, . . . , fn} ⊂ aff∆ associated to ∆. (For i = 0, . . . , n, fi ∈ aff∆ is the
normalized affine functional that vanishes on the i-th face [x0, . . . , x̂i, . . . , xn] (opposite
to the vertex xi), and fi(xi) = 1.) For z ∈ int ∆ with z =

∑n
i=0 λixi,

∑n
i=0 λi = 1,

λi ∈ (0, 1), we have fi(z) = λi, i = 0, . . . , n. Since (16) obviously holds, we have
σo∆,n(z) ≤

∑n
i=0 fi(z) =

∑n
i=0 λi = 1. By (23), equality must hold. We see that

{f0, . . . , fn} ∈ Co∆,n(z) is the (unique) minimal dual n-configuration for all z ∈ int ∆.
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As a byproduct, we see that all interior points of an n-simplex are dual regular, that
is Ro

∆ = int ∆. (Note that the same holds for (non-dual) regular points.)

Remark. The previous example can be used to show directly that if σoK,n(z) = 1
then K is an n-simplex. This gives an alternative proof of the last part of Theorem 2
(for Π(K) instead of K) without the recourse of the Minkowski-Radon theorem.
Assume σoK,n(z) = 1 for some z ∈ intK. First, any minimal dual n-configuration
of z must be simplicial. Indeed, otherwise a minimal dual n-configuration would
contain a proper subconfiguration, and we would have arithmeticity: 1 = σoK,n =
σoK,n−1 + 1/(mK(z) + 1) > 1, a contradiction. Second, let {f0, . . . , fn} ∈ ∆o

K(z) be a
minimal simplicial dual configuration. The corresponding n-simplex ∆ =

⋂n
i=0{u ∈

X | fi(u) ≥ 0} contains K. For each i = 0, . . . , n, let f̃i ∈ aff∆ be the normalized
affine functional such that {u ∈ X | fi(u) = 0} = {u ∈ X | f̃i(u) = 0}. Now, assume
that K is not a simplex. Then fi(z) < f̃i(z) for some i = 0, . . . , n. We then have
1 = σoK,n(z) =

∑n
i=0 fi(z) <

∑n
i=0 f̃i(z) = σ∆,n(z) = 1, where the last two equalities

follow from Example 5. This is a contradiction, so that K must be an n-simplex.

Proof of Theorem 3. We first introduce some notation. We define

M(z) = {x ∈ ∂K |λK(x, z) = mK(z)}, z ∈ intK,

where mK : intK → R is the maximal Minkowski ratio. Clearly, M(z) ⊂ ∂K is
compact, and for every x ∈M(z), the chord [x, xo] of K is an affine diameter. (This
is an elementary fact; also noted in [10, 3.2].)

We now turn to the proof in which we will use several results of Klee in [10].
Let N (z∗) = M(z∗)o ⊂ ∂K be the opposite set of M(z∗) ⊂ ∂K with respect to z∗.
Denote by G the family of closed half-spaces that intersect N (z∗) but disjoint from
intK. Clearly, for each G ∈ G, the boundary H = ∂G is a hyperplane supporting K
at a point in N (z∗). Conversely, for any hyperplane H supporting K at a point in
N (z∗), the closed half-space G with boundary H and disjoint from K belongs to G.
In a technical lemma, Klee in [10, 3.1] proved⋂

G =
⋂
G∈G

G = ∅.

Taking interiors, the family

I = intG = {intG, | G ∈ G}

of open half-spaces is in Klee’s terminology 0-closed. This means that, for any se-
quence {Ik}k≥1 ⊂ G which is Kuratowski convergent to a limit I, we have int I ∈ G.
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(Note that, by definition, any Kuratowski limit is a closed set.)
We now need Klee’s extension of Helly’s theorem for 0-closed families: If any n + 1
members of an 0-closed family has non-empty intersection then the interior of the
intersection of all members of the family is non-empty (see [10, 3.2]).
We apply this to our family I of open half-spaces above. Since

⋂
I = ∅ (as

⋂
G = ∅)

we see that that there are n+1 open half-spaces I0, . . . , In ∈ I such that
⋂n
i=0 Ik = ∅.

Let i = 0, . . . , n. We select xi ∈ M(z∗) such that the opposite xoi ∈ Īi (with respect
to z∗). Then [xi, x

o
i ] is an affine diameter with λK(xi, z

∗) = mK(z∗) = m∗K . We
let fi ∈ affK be the (unique) normalized affine functional with zero-set ∂Ii. Since
xoi ∈ ∂Ii, we have fi(x

o
i ) = 0 and hence fi(xi) = 1. We calculate

fi(z
∗) =

d(xoi , z
∗)

d(xoi , xi)
=

1

d(xi, z∗)/d(xoi , z
∗) + 1

=
1

λK(xi, z∗) + 1
=

1

m∗K + 1
.

Summing up, we obtain

σoK,n(z∗) ≤
n∑
i=0

fi(z
∗) =

n+ 1

m∗K + 1
.

On the other hand, by (18), the right-hand side is an obvious lower bound for σoK,n(z∗).
Theorem 3 follows.

4 Regular Points and the Grünbaum Conjecture

Let K ⊂ X be a convex body. Recall that z ∈ intK is a regular point if all mini-
mal n-configurations in CK,n(z) are simplicial, that is they belong to ∆K(z). Since
minimal simplicial configurations do not contain any proper (necessarily minimal)
subconfigurations, this condition can be conveniently reformulated in terms of the
mean Minkowski measures: z ∈ intK is regular iff in (10) strict sub-arithmeticity
holds:

σK,n(z) < σK,n−1(z) +
1

mK(z) + 1
. (34)

(For more details, see [17].) Since the mean Minkowski measures are continuous, we
see that the set of all regurar points RK ⊂ intK is open.

Let z ∈ RK be a regular point, and {x0, . . . , xn} ∈ ∆K(z) a minimal simplicial
configuration. Since z is in the interior of the n-simplex [x0, . . . , xn], by (9), for each
i = 0, . . . , n, the distortion λK(·, z) attains a local maximum at xi. It is well-known
that at local maxima of the distortion the corresponding chord (through z) is an affine
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diameter. (See, for example [7] or [18].) We conclude that, for each i = 0, . . . , n, the
chord [xi, x

o
i ] is an affine diameter. Thus, at any regular point z ∈ RK , n + 1 affine

diameters meet.
In 1963 Grünbaum conjectured that any convex body has a common point of n + 1
affine diameters. We see that if RK 6= ∅ then we have an affirmative answer to
Grünbaum’s conjecture: At any regular point n+ 1 affine diameters meet.

We now consider the dual scenario. Recall that a dual n-configuration {f0, . . . , fn} ∈
CoK,n(z) is called simplicial if {f ]0, . . . , f ]n} ∈ CKz ,n(z) is simplicial, where ] = ]K,z :
affK → ∂Kz is the musical equivalence. As noted previously, geometrically, a dual
n-configuration {f0, . . . , fn} ∈ CoK,n(z) is simplicial if and only if

⋂n
i=0{u ∈ X | fi(u) ≥

0} is an n-simplex with z in its interior. The set of dual simplicial configurations is
denoted by ∆o

K(z). By (20), for {f0, . . . , fn} ⊂ affK , we have

{f0, . . . , fn} ∈ ∆o
K(z) ⇔ {f ]0, . . . , f ]n} ∈ ∆Kz(z).

Recall that an interior point z ∈ intK is called dual regular if any minimal dual
n-configuration in CoK,n(z) is simplicial. The set of all dual regular points is denoted
by Ro

K ⊂ intK. As in the dual case, z ∈ Ro
K if and only if

σoK,n(z) < σoK,n−1(z) +
1

mK(z) + 1
, (35)

in particular, Ro
K ⊂ intK is open.

Now, comparing (34) and (35), Theorem 1 along with (7) give (26).

Let z ∈ Ro
K be a dual regular point and {f0, . . . , fn} ∈ ∆o

K(z) a minimal simplicial
configuration. We have z ∈ RKz , and, by Theorem 1, {f ]0, . . . , f ]n} ∈ ∆Kz(z) is a
minimal simplicial configuration. By the discussion above, for each i = 0, . . . , n, the
chord [f ]i , (f

]
i )
o] is an affine diameter of Kz. Let Ki and Koi be parallel hyperplanes

at the endpoints of f ]i and (f ]i )
o. Finally, let gi ∈ affKz be the normalized affine

functional with zero-sets Ki = {u ∈ X | gi(u) = 0} and Koi = {u ∈ X | 1− gi(u) = 0}.
By the discussion at the end of Section 2, for each i = 0, . . . , n, the chord [g]i , (g

]
i)
o] is

an affine diameter of K = (Kz)z, and the parallel supporting hyperplanes at the end-
points are given by the respective zero-sets of the original affine functional fi = (f ]i )

[.
Letting xi = g]i ∈ ∂K, we see that the zero-sets Hi = {u ∈ X | fi(u) = 0} and
Ho
i = {u ∈ X | 1 − fi(u) = 0} are parallel supporting hyperplanes of K with affine

diameters [xi, x
o
i ] ⊂ K, i = 0, . . . , n.

We claim that the affine diameters [xi, x
o
i ], i = 0, . . . , n, are distinct. Assume that

[xi, x
o
i ] = [xj, x

o
j ] for some i 6= j, i, j = 0, . . . , n. (This means that this common

affine diameter has two pairs of parallel supporting hyperplanes, Hi, Ho
i and Hj, Ho

j .)
Since xi = xj or xi = xoj , in the dual, we have gi = gj or gi = 1 − gj. In particular,
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the affine diameters [f ]i , (f
]
i )
o] and [f ]j , (f

]
j )
o] of Kz share a single pair of parallel

supporting hyperplanes, Ki = Kj, Koi = Koj , or Ki = Koj , Koi = Kj. On the other

hand, in a minimal simplicial configuration of a regular point (such as {f ]0, . . . , f ]n} ∈
∆Kz(z) with z ∈ RKz) two affine diameters cannot share the same parallel supporting
hyperplanes since otherwise we can slide one in the respective hyperplanes (along a
line segment) to the other to obtain another minimal configuration with multiple
points or a pair of antipodal points. These contradict to regularity.
We conclude that if z ∈ Ro

K then n+ 1 affine diameters meet at z.

Proof of Theorem 4. Let z∗ ∈ K∗ be a critical point of K. Sub-arithmeticity
in (21) gives

σoK,n(z∗) ≤ σoK,n−1(z∗) +
1

m∗K + 1
.

The equality in (25) of Theorem 3 reduces this to (27), and the first statement of
Theorem 4 follows. Strict inequality holds iff z∗ ∈ Ro

K , a dual regular point. By the
discusssion above, this implies the existence of n+ 1 affine diameters across z∗. The
second statement of Theorem 4 follows.

Proof of Theorem 5. Let K be a symmetric convex body with center z0. Assume
that z ∈ intK is a dual regular point. Since the center z0 is obviously not dual regular,
we may assume that z 6= z0. Let {f0, . . . , fn} ∈ CoK,n(z) be a minimal configuration.
Since z ∈ Ro

K , this configuration is simplicial. Fix i = 0, . . . , n, and, for simplicity,
suppress the subscript and set f = fi ∈ affK . By the discussion before the proof
of Theorem 4, K has an affine diameter [x, xo] ⊂ K with supporting hyperplanes
H = {u ∈ X | f(u) = 0} and Ho = {u ∈ X | 1 − f(u) = 0} such that x ∈ H and
xo ∈ Ho. (Here the opposite is with respect to z.)
Let A ∈ ∂K be the point at which the ray r emanating from z0 and passing through
z meets the boundary of K. We claim that [A,Ao] is an affine diameter of K, and,
beyond A, this ray r enters into the half-space {u ∈ X | f(u) ≤ 0}. Since r is
independent of i = 0, . . . , n, this means that the intersection in (16) is non-empty; a
contradiction.
If x is on r then A = x and we are done. Thus we may assume that the points x, z,
and z0 are not collinear.
Let xo0 ∈ ∂K ∩ Ho be the opposite of x with respect to the center z0. By symmetry,
we have [xo, xo0] ⊂ ∂K ∩Ho.
Let A1 ∈ ∂K be the opposite of xo0 with respect to z. Moving along the line segment
[xo, xo0] and taking the opposites (with respect to z), we see that A1 ∈ H since f(z)
is a local minimum in affK . Since H supports K, we have [A1, x] ⊂ ∂K ∩ H. We
now define Ak, k ≥ 1, inductively as follows. Assume that Ak ∈ ∂K is constructed
with [Ak, x] ⊂ ∂K ∩ H. We take the opposite of Ak with respect to z0 followed
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by the opposite with respect to z. This gives the point Ak+1. As before, we have
[Ak+1, x] ⊂ ∂K ∩ H. The sequence {Ak}k≥1 is actually collinear and converges to
A ∈ ∂K which then must be on H. (In fact, an elementary argument shows that
the sequence {d(Ak, A)}k≥1 is geometric.) By construction, the chord [A,Ao] is an
affine diameter, where Ao is the opposite of A with respect to z. After A the ray r
enters the open half-space {u ∈ X | f(u) < 0}. The claim follows and the proof of
Theorem 5 is complete.
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[13] M. Meyer, C. Schütt and E.M. Werner, Affine invariant points, Isr. J. Math. 208,
1 (2015) 163-192.

[14] R. Schneider, Convex Bodies, the Brunn-Minkowski Theory, Second Edition,
Cambridge (2014).

[15] Soltan, V, Affine diameters of convex bodies - a survey, Expo. Math. 23 (2005)
47-63.

[16] V. Soltan and M.H. Nguyên, On the Grünbaum problem on affine diameters,
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