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Observation of wave equations

(M, g) Riemannian manifold

4g Laplace-Beltrami

Ω open bounded connected subset of M

ω ⊂ Ω subset of positive measure

Wave equation

ytt = 4gy , (t , x) ∈ (0,T )× Ω,

y(0, ·) = y0 ∈ L2(Ω), yt (0, ·) = y1 ∈ H−1(Ω)

Schrödinger equation

iyt = 4gy , (t , x) ∈ (0,T )× Ω,

y(0, ·) = y0 ∈ L2(Ω)

If ∂Ω 6= ∅, then Dirichlet boundary conditions: y(t , ·)|∂Ω = 0.
(also: Neumann, mixed, or Robin boundary conditions)

Observable

z = χωy
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Observability

Observability inequality

The system is said observable (in time T > 0) if there exists CT (ω) > 0 such that

∀(y0, y1) ∈ L2(Ω)× H−1(Ω) CT (ω)‖(y0, y1)‖2
L2×H−1 ≤

Z T

0

Z
ω

y(t , x)2dxdt .

Bardos-Lebeau-Rauch (1992): the observability inequality holds if the pair (ω,T )
satisfies the Geometric Control Condition (GCC) in Ω:

Every ray of geometrical optics that propagates in Ω and is reflected on its
boundary ∂Ω intersects ω in time less than T .
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Observability

Observability inequality

The system is said observable (in time T > 0) if there exists CT (ω) > 0 such that

∀(y0, y1) ∈ L2(Ω)× H−1(Ω) CT (ω)‖(y0, y1)‖2
L2×H−1 ≤

Z T

0

Z
ω

y(t , x)2dxdt .

Bardos-Lebeau-Rauch (1992): the observability inequality holds if the pair (ω,T )
satisfies the Geometric Control Condition (GCC) in Ω:

Every ray of geometrical optics that propagates in Ω and is reflected on its
boundary ∂Ω intersects ω in time less than T .

Question

What is the ”best possible” control domain ω of fixed given measure?

E. Trélat Optimal shape and placement of actuators or sensors



Related problems

1) What is the ”best domain” for achieving HUM optimal control?

ytt −∆y = χωu

2) What is the ”best domain” domain for stabilization (with localized damping)?

ytt −∆y = −kχωyt

See works by
- P. Hébrard, A. Henrot: theoretical and numerical results in 1D for optimal stabilization (for all initial data).
- A. Münch, P. Pedregal, F. Periago: numerical investigations of the optimal domain (for one fixed initial data). Study
of the relaxed problem.
- S. Cox, P. Freitas, F. Fahroo, K. Ito, ...: variational formulations and numerics.
- M.I. Frecker, C.S. Kubrusly, H. Malebranche, S. Kumar, J.H. Seinfeld, ...: numerical investigations (among a finite
number of possible initial data).
- K. Morris, S.L. Padula, O. Sigmund, M. Van de Wal, ...: numerical investigations for actuator placements
(predefined set of possible candidates), Riccati approaches.

- ...
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The model

Let L ∈ (0, 1) and T > 0 fixed.

It is a priori natural to model the problem as:

Uniform optimal design problem

Maximize

CT (ω) = inf

(R T
0

R
ω y(t , x)2dxdt

‖(y0, y1)‖2
L2×H−1

| (y0, y1) ∈ L2(Ω)× H−1(Ω) \ {(0, 0)}
)

or such a kind of criterion, over all possible subsets ω ⊂ Ω of measure |ω| = L|Ω|.

BUT...
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The model

Two difficulties arise with this model.

1 Theoretical difficulty.

2 The model is not relevant wrt practice.
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Spectral expansion

−λ2
j , φj , j ∈ N∗: eigenelements

Every solution can be expanded as y(t , x) =
+∞X
j=1

(aj cos(λj t) + bj sin(λj t))φj (x)

with aj =

Z
Ω

y0(x)φj (x) dx , bj =
1
λj

Z
Ω

y1(x)φj (x) dx , for every j ∈ N∗. Moreover,

‖(y0, y1)‖2
L2×H−1 =

+∞X
j=1

(a2
j + b2

j ). Then:

Z T

0

Z
ω

y(t , x)2dxdt =

Z T

0

Z
ω

0@+∞X
j=1

`
aj cos(λj t) + bj sin(λj t)

´
φj (x)

1A2

dxdt

=
+∞X
i,j=1

αij

Z
ω
φi (x)φj (x)dx

where

αij =

Z T

0
(ai cos(λi t) + bi sin(λi t))(aj cos(λj t) + bj sin(λj t))dt .

The coefficients αij depend only on the initial data (y0, y1).
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Spectral expansion

Conclusion:

Z T

0

Z
ω

y(t , x)2dxdt =
+∞X
i,j=1

αij

Z
ω
φi (x)φj (x) dx

with

αij =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ai aj

 
sin(λi + λj )T

2(i + j)
+

sin(λi − λj )T

2(λi − λj )

!
+ ai bj

 
1− cos(λi + λj )T

2(λi + λj )
−

1− cos(λi − λj )T

2(λi − λj )

!

+ aj bi

 
1− cos(λi + λj )T

2(λi + λj )
+

1− cos(λi − λj )T

2(λi − λj )

!
+ bi bj

 
−

sin(λi + λj )T

2(λi + λj )
+

sin(λi − λj )T

2(λi − λj )

!
if λi 6= λj ,

a2
j

 
T

2
+

sin 2λj T

4λj

!
+ aj bj

 
1− cos 2λj T

2λj

!
+ b2

j

 
T

2
−

sin 2λj T

4λj

!
if λi = λj .

The coefficients αij depend only on the initial data (y0, y1).
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Solving of the uniform design problem

sup
ω⊂Ω
|ω|=L|Ω|

CT (ω) = sup
ω⊂Ω
|ω|=L|Ω|

infP
(a2

j +b2
j )=1

+∞X
i,j=1

αij

Z
ω
φi (x)φj (x) dx

→ serious difficulty due to the crossed terms.

Same difficulty in the (open) problem of determining the optimal constants in Ingham’s
inequalities.
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The model

Two difficulties arise with this model.

1 Theoretical difficulty.

2 The model is not relevant wrt practical expectation.
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The model

The usual observability constant is deterministic and gives an account for the worst
case. It is pessimistic.

In practice: many experiments, many measures.

Objective: optimize the sensor shape and location in average.

→ randomized observability constant.
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Randomized observability constant

Averaging over random initial data:

Randomized observability inequality

CT ,rand(ω) ‖(y0, y1)‖2
L2×H−1 ≤ E

 Z T

0

Z
ω

yν(t , x)2 dxdt

!

where yν(t , x) =
+∞X
j=1

“
βν1,j aj e

iλj t + βν2,j bj e
−iλj t

”
φj (x), with βν1,j , β

ν
2,j i.i.d. Bernoulli.

(inspired from Burq-Tzvetkov, Invent. Math. 2008).

Theorem

CT ,rand(χω) =
T
2

inf
j∈N∗

Z
ω
φj (x)2 dx .

Remark

There holds CT ,rand(χω) ≥ CT (χω). There are examples where the inequality is strict.
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The uniform optimal design problem

Conclusion: we model the problem as

sup
ω⊂Ω
|ω|=L|Ω|

inf
j∈N∗

Z
ω
φj (x)2 dx

Remark

This is an energy (de)concentration criterion.
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Remark: another way of arriving at this criterion

Averaging in time:
Time asymptotic observability inequality:

C∞(χω)‖(y0, y1)‖2
L2×H−1 ≤ lim

T→+∞

1
T

Z T

0

Z
ω
|y(t , x)2| dx dt ,

with

C∞(χω) = inf

8<: lim
T→+∞

1

T

R T
0
R
ω |y(t, x)|2 dx dt

‖(y0, y1)‖2
L2×H−1

˛̨
(y0
, y1) ∈ L2 × H−1 \ {(0, 0)}

9=; .

Theorem

If the eigenvalues of4g are simple then C∞(χω) =
1
2

inf
j∈N∗

Z
ω
φj (x)2 dx .

Remarks

C∞(χω) ≤
1
2

inf
j∈N∗

Z
ω
φj (x)2 dx .

lim sup
T→+∞

CT (χω)

T
≤ C∞(χω). There are examples where the inequality is strict.
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Solving of the problem

sup
ω⊂Ω
|ω|=L|Ω|

inf
j∈N∗

Z
Ω
χω(x)φ2

j (x) dx

1. Convexification procedure

UL = {a ∈ L∞(Ω, (0, 1)) |
Z

Ω
a(x) dx = L|Ω|}.

−→ sup
a∈UL

inf
j∈N∗

Z
Ω

a(x)φ2
j (x) dx

A priori:

sup
ω⊂Ω
|ω|=L|Ω|

inf
j∈N∗

Z
ω
φ2

j (x) dx ≤ sup
a∈UL

inf
j∈N∗

Z
Ω

a(x)φ2
j (x) dx .
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Solving of the problem
Moreover, under the assumptions

WQE (weak Quantum Ergodicity) Assumption

There exists a subsequence such that

φ2
j dx ⇀

dx
|Ω|

vaguely.

Uniform L∞-boundedness

There exists A > 0 such that
‖φj‖L∞ ≤ A.

we have
sup

a∈UL

inf
j∈N∗

Z
Ω

a(x)φ2
j (x) dx = L

(reached with a ≡ L)

Remarks

It is true in 1D, since φj (x) =
q

2
π

sin(jx) on Ω = [0, π].
Moreover, this relaxed problem has an infinite number of solutions, given by

a(x) = L +
X

j

(aj cos(2jx) + bj sin(2jx)) with aj ≤ 0

(and with |aj | and |bj | small enough so that 0 ≤ a(·) ≤ 1).
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Solving of the problem
Moreover, under the assumptions

WQE (weak Quantum Ergodicity) Assumption

There exists a subsequence such that

φ2
j dx ⇀

dx
|Ω|

vaguely.

Uniform L∞-boundedness

There exists A > 0 such that
‖φj‖L∞ ≤ A.

we have
sup

a∈UL

inf
j∈N∗

Z
Ω

a(x)φ2
j (x) dx = L

(reached with a ≡ L)

Remarks

In multi-D:
L∞-WQE is true in any flat torus.

If Ω is an ergodic billiard with W 2,∞ boundary then φ2
j dx ⇀

1
|Ω|

dx

vaguely for a subset of indices of density 1.

Gérard-Leichtnam (Duke Math. 1993), Zelditch-Zworski (CMP 1996)
(see also Shnirelman, Burq-Zworski, Colin de Verdière, ...)
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Solving of the problem

2. Gap or no-gap?

A priori, under WQE and uniform L∞ boundedness assumptions:

sup
ω⊂Ω
|ω|=L|Ω|

inf
j∈N∗

Z
ω
φ2

j (x) dx ≤ sup
a∈UL

inf
j∈N∗

Z
Ω

a(x)φ2
j (x) dx = L.

Remarks in 1D:

Note that, for every ω, 2
π

R
ω sin2(jx) dx → L as j → +∞.

No lower semi-continuity property of the criterion.

With ωN =
SN

k=1

h
kπ

N+1 −
Lπ
2N ,

kπ
N+1 + Lπ

2N

i
, one has χωN ⇀ L but

lim
N→+∞

inf
j∈N∗

2
π

Z
ωN

sin2(jx)dx < L.

⇒ this cannot follow from usual Γ-convergence arguments.
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Solving of the problem

Theorem 1

Under WQE and uniform L∞ boundedness assumptions, there is no gap, that is:

sup
χω∈UL

inf
j∈N∗

Z
Ω
χω(x)φj (x)2 dx = sup

a∈UL

inf
j∈N∗

Z
Ω

a(x)φj (x)2 dx = L.

→ the maximal value of the time-asymptotic / randomized observability constant is L.

Remark

The assumptions are sufficient but not sharp:
the result also holds also true in the Euclidean disk, for
which however the eigenfunctions are not uniformly
bounded in L∞ (whispering galleries phenomenon).
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→ the maximal value of the time-asymptotic / randomized observability constant is L.

Remark

The assumptions are sufficient but not sharp:
the result also holds true in the Euclidean disk, for
which however the eigenfunctions are not uniformly
bounded in L∞ (whispering galleries phenomenon).
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Solving of the problem

QUE (Quantum Unique Ergodicity) Assumption

We assume that φ2
j dx ⇀

dx
|Ω|

vaguely. (i.e. the whole sequence converges to the uniform measure)

Ub
L = {χω ∈ UL | |∂ω| = 0}

Theorem 2

Under QUE + Lp-boundedness of the φj ’s for some p > 2,

sup
χω∈Ub

L

inf
j∈N∗

Z
Ω
χω(x)φj (x)2 dx = L.

Remark: The result holds as well if one replaces Ub
L with either the set of open subsets

having a Lipschitz boundary, or with a bounded perimeter.
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Solving of the problem

Comments on ergodicity assumptions:

true in 1D, since φj (x) =
q

2
π

sin(jx) on Ω = [0, π].

Quantum Ergodicity property (QE) in multi-D:

- Gérard-Leichtnam (Duke Math. 1993), Zelditch-Zworski (CMP 1996):

If Ω is an ergodic billiard with W 2,∞ boundary then φ2
j dx ⇀

dx
|Ω|

vaguely for a

subset of indices of density 1.

- Strictly convex billiards sufficiently regular are not ergodic (Lazutkin, 1973).
Rational polygonal billiards are not ergodic.
Generic polygonal billiards are ergodic (Kerckhoff-Masur-Smillie, Ann. Math.
’86).

- There exist some convex sets Ω (stadium shaped) that satisfy QE
but not QUE (Hassell, Ann. Math. 2010)

- QUE conjecture (Rudnick-Sarnak 1994): every compact manifold having
negative sectional curvature satisfies QUE.
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Solving of the problem

Hence in general this assumption is related with ergodic / concentration / entropy
properties of eigenfunctions.

See Shnirelman, Sarnak, Bourgain-Lindenstrauss, Colin de Verdière, Anantharaman,
Nonenmacher, De Bièvre,...

If this assumption fails, we may have scars:
energy concentration phenomena
(there can be exceptional subsequences
converging to other invariant measures, like, for
instance, measures carried by closed
geodesics: scars)
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Solving of the problem
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Solving of the problem

Come back to the theorem:

Under certain quantum ergodicity assumptions, there holds

sup
χω∈UL

inf
j∈N∗

Z
ω
φj (x)2 dx = L.

Moreover:
We are able to prove that, for certain sets Ω, the second problem does not have any
solution (i.e., the supremum is not reached).
We conjecture that this property is generic.
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Solving of the problem

Last remark:

The proof of this no-gap result is based on a quite technical homogenization-like
procedure. In dimension one, it happens that it is equivalent to the following harmonic
analysis result:

Let F the set of functions

f (x) = L +
+∞X
j=1

(aj cos(2jx) + bj sin(2jx)), with aj ≤ 0 ∀j ∈ N∗.

Then:
d(F ,UL) = 0

but there is no χω ∈ F .

(where UL = {χω | ω ⊂ [0, π], |ω| = Lπ})
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Truncated version of the second problem

Since the second problem may have no solution, it makes sense to consider as in

P. Hébrard, A. Henrot, A spillover phenomenon in the optimal location of actuators, SIAM J. Control Optim.
44 (2005), 349–366.

a truncated version of the second problem:

sup
ω⊂Ω
|ω|=L|Ω|

min
1≤j≤N

Z
ω
φ2

j (x) dx
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Truncated version of the second problem

sup
ω⊂Ω
|ω|=L|Ω|

min
1≤j≤N

Z
ω
φ2

j (x) dx

Theorem

The problem has a unique solution ωN .
Moreover, ωN has a finite number of connected components.
If Ω has a symmetry hyperplane, then ωN enjoys the same symmetry property.
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Truncated version of the second problem

Theorem, specific to the 1D case

ωN is symmetric with respect to π/2, is the union of at most N intervals, and:
there exists LN ∈ (0, 1] such that, for every L ∈ (0, LN ],Z

ωN
sin2 x dx =

Z
ωN

sin2(2x) dx = · · · =

Z
ωN

sin2(Nx) dx .

Equality of the criteria⇒ the optimal domain ωN concentrates around the points
kπ

N+1 , k = 1, . . . ,N.

Spillover phenomenon: the best domain ωN for the N rst modes is the worst
possible for the N + 1 first modes.
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Several numerical simulations
Problem 2 (Dirichlet case): Optimal domain for N=2 and L=0.2
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Problem 2 (Dirichlet case): Optimal domain for N=5 and L=0.2
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Problem 2 (Dirichlet case): Optimal domain for N=10 and L=0.2
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Problem 2 (Dirichlet case): Optimal domain for N=20 and L=0.2
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Problem 2 (Dirichlet case): Optimal domain for N=2 and L=0.4
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Problem 2 (Dirichlet case): Optimal domain for N=5 and L=0.4
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Problem 2: Optimal domain for N=10 and L=0.4
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Problem 2 (Dirichlet case): Optimal domain for N=20 and L=0.4
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Problem 2 (Dirichlet case): Optimal domain for N=2 and L=0.6
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Problem 2 (Dirichlet case): Optimal domain for N=5 and L=0.6
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Problem 2 (Dirichlet case): Optimal domain for N=10 and L=0.6
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Problem 2 (Dirichlet case): Optimal domain for N=20 and L=0.6
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Several numerical simulations

Problem 2 (Dirichlet case): Optimal domain for N=1 and L=0.2 Problem 2 (Dirichlet case): Optimal domain for N=2 and L=0.2 Problem 2 (Dirichlet case): Optimal domain for N=5 and L=0.2

Problem 2 (Dirichlet case): Optimal domain for N=10 and L=0.2 Problem 2 (Dirichlet case): Optimal domain for N=20 and L=0.2
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Further comments

1. Existence of a maximizer

Ensured if UL is replaced with any of the following choices:

VL = {χω ∈ UL | PΩ(ω) ≤ A} (perimeter)

VL = {χω ∈ UL | ‖χω‖BV (Ω) ≤ A} (total variation)

VL = {χω ∈ UL | ω satisfies the 1/A-cone property}

where A > 0 is fixed.
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Further comments

2. Intrinsic variant.

Maximize
inf
φ∈E

Z
ω
φ(x)2 dx

over all possible subsets ω of Ω of measure |ω| = L|Ω|, where E denotes the set of all
normalized eigenfunctions of4g .

−→ Same no-gap results as before.

−→ Examples of gap: unit sphere of R3, or half-unit sphere with
Dirichlet boundary conditions.
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Further comments

3. Parabolic equations
yt = Ay

(for example, heat equation)

Observability inequality:

CT (χω)‖y(T , ·)‖2
L2 ≤

Z T

0

Z
ω
|y(t , x)|2 dx dt

−→ The situation is very different.
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Further comments

3. Parabolic equations
yt = Ay

(for example, heat equation)

In that case, the problem is reduced (by averaging either in time or w.r.t. random initial
conditions) to

sup
χω∈UL

inf
j∈N∗

γj

Z
ω
|φj (x)|2dx with γj =

e2<(λj )T − 1
2<(λj )

.

Theorem

Assume that
lim inf
j→+∞

γj (T )

Z
Ω

a(x)|φj (x)|2 dx > γ1(T ),

for every a ∈ UL. Then there exists N ∈ N∗ such that

sup
χω∈UL

inf
j∈N∗

γj

Z
ω
|φj |2 = max

χω∈UL
inf

1≤j≤n
γj

Z
ω
|φj |2,

for every n ≥ N. In particular there is a unique solution χωN . Moreover if M is analytic
then ωN is semi-analytic and has a finite number of connected components.

The condition γ1 < L < 1 seems optimal (see numerical simulations).

This result holds in any torus, or in the Euclidean n-dimensional square for
Dirichlet or mixed Dirichlet-Neumann conditions.
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Optimal domain for the Heat equation (Dirichlet case) with N=1, T=0.05 and L=0.2
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Optimal domain for the Heat equation (Dirichlet case) with N=2, T=0.05 and L=0.2
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Optimal domain for the Heat equation (Dirichlet case) with N=3, T=0.05 and L=0.2
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Optimal domain for the Heat equation (Dirichlet case) with N=4, T=0.05 and L=0.2
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Optimal domain for the Heat equation (Dirichlet case) with N=5, T=0.05 and L=0.2
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Optimal domain for the Heat equation (Dirichlet case) with N=6, T=0.05 and L=0.2
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L = 0.2, T = 0.05, Ω = [0, π]2, Dirichlet boundary conditions.
N ∈ {1, 2, 3, 4, 5, 6}.
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Conclusion and perspectives

Same kind of analysis for the optimal design of the control domain.

Intimate relations between domain optimization and quantum chaos (quantum
ergodicity properties).

Next issues (ongoing works with Y. Privat and E. Zuazua)

Consider other kinds of spectral criteria permitting to avoid spillover.

Discretization issues: do the numerical optimal designs converge to the
continuous optimal design as the mesh size tends to 0?

Y. Privat, E. Trélat, E. Zuazua,

Optimal observation of the one-dimensional wave equation, J. Fourier Analysis Appl. (2013), to
appear.
Optimal location of controllers for the one-dimensional wave equation, Ann. Inst. H. Poincaré (2013),
to appear.
Optimal observability of wave and Schrödinger equations in ergodic domains, Preprint.
Optimal shape and location of sensors or controllers for parabolic equations
with random initial data, Preprint.
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