INVARIANT WAVE MAPS FROM GODEL’S
UNIVERSE

SORIN DRAGOMIR

ABSTRACT. Go6del’s metric is a solution g, to the Einstein field
equations, with cosmological constant, in the presence of an in-
coherent matter distribution. Gédel’s universe G2 = (]R4, ga) is
the total space of a principal bundle R — G — M3 over a 3-
dimensional nondegenerate CR manifold M? = G2 /K got as the
space of orbits of a null Killing vector field K on gi. Invariant
wave maps ® : G2 — N are precisely the vertical lifts of subelliptic
harmonic maps ¢ : M2 — N. For every such ¢ we solve the L?
Dirichlet problem for the (degenerate elliptic) Jacobi operator J,f’

and prove that J}f’ has a discrete spectrum.

1. WHY WAVE MAPS FROM G17

We start with a few motivational remarks® bringing into the picture
wave maps from Godel’s universe. Godel’s metric
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is a solution to Einstein’s field equations for an incoherent matter dis-
tribution at rest
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and the field equations are the Euler-Lagrange equations of the varia-
tional principle 0 Sq(g) = 0 where
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where L is the Lagrangian density of matter (including all non-gravita-
tional fields). According to Mach’s principle the distribution of matter
in a region of the universe should uniquely determine the geometry
of that region. Yet the very same field equations above admit other
solutions, such as Einsten’s static solution, possessing drastically dif-
ferent geometric/physical properties. Consequently, Mach’s principle
may not be embodied into General Relativity on the ground of the field
equations alone.

Brans-Dicke theory is a modification of General Relativity aiming to
incorporate Mach’s principle into General Relativity. A bit of heuristics
is in order, to "derive” Brans-Dicke’s modified action Sg(g, @) from
Sal(g). Let us look at the case where the cosmological constant is
A = 0 and divide formally by G = rc?

/ {GIR(g)er—ZTL} dv,.
Q C

let G vary as a function of a scalar field ® : R* — R i.e. take G~! = @,
and add the Lagrangian density of that scalar field

167 W,
(1) /Q {Q) R(g) + —a L— ag“ @u@h,] dvg.

Cf. C. Brans and R.H. Dicke, [1]. As a further generalization of Sq(g)
[with A = 0 and L = 0] S. Ianug and M. Visinescu allowed (cf. [2])
for more general values of ® i.e. assumed that ® : R* — N where N
is an arbitrary Riemannian manifold, with the Riemannian metric h,
and replaced the Lagrangian density of the scalar field by the trace of
the bilinear form ®*h with respect to g. Their action reads

SQ(g, (I)) = 5/;2 |:—T + pg# (I)|#CI)|]V hij od dVg
where A? is a constant expressing the strength of the self-coupling of
the scalar fields @' (1 < i < dim(N)). Note that &g ®),P|, in (1)
is the trace Trace, (P*h) with h = t~! dt @ dt (a Riemannian metric on
N =R). The Euler-Lagrange equations of § Sq(g, ®) = 0 are

2 . o
R#y:ﬁ |“(I>fuhijo<l>,
% 7 j k v
—0" + (T, 0 @) @, @f, g" = 0.

The second set of field equations is the familiar harmonic maps system
and ® : R* — N is a wave map for any extremal point (g, ®) of the
action. We speculate that Brans-Dicke’s theory, eventually compatible
with Mach’s principle, should be applied to Godel’s universe G =
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(R*, g,), allowing for more general values of ® as in S. Tanug and M.
Viginescu’s work. The subject of this talk is the mathematical analysis
of a particular class of wave maps ® : G2 — N.

REFERENCES

[1] C. Brans & R.H. Dicke, Mach’s principle and a relativistic theory of grav-
itation, Phys. Rev., 124(1961), 925-935.
[2] S. Tanug & M. Viginescu, Spontaneous compactification induced by non-

linear scalar dynamics, gauge fields and submersions, Class. Quantum
Grav., 3(1986), 889-896.

2. THE PRINCIPAL BUNDLE R — G4 — M3

The vector field
0 0

-~ 020 OB

is null [i.e. go(K, K) = 0] and Killing (i.e. Lxgo = 0). The leaf space
G4 /K (the space of all maximal integral curves of K') admits a C* man-
ifold structure and a nondegenerate CR structure. This may be learned
from L. Koch (cf. [2]) yet appears to be known much earlier in physics
(cf. I. Robinson, [3]): one may associate a natural 3-dimensional CR
manifold to every Lorentzian manifold carrying a shear-free null ge-
odesic congruence. Cf. also I. Robinson and A. Trautman, [4], who
explain the phenomenon in terms of flag geometries. Originality in L.
Koch’s work (cf. op. cit.) is therefore confined to the nevertheless
useful observation that the quotient space Gi/K may be realized as
the hyperplane M3 C R* of equation

2+ 2% =0
and to the explicit construction of a CR structure on M?3. This may

be briefly described as follows. Straightforward integration of K shows
that its maximal integral curves are the lines

Yo(s) =s(eg —e3) +a, s€ER, acR*,
hence
RY/K ={[,:a € R}, T,="(R).
One observes that
[,=Ty<=b-acC'
where C! is the line of equations
D +23=0, zt=2>=0.
Let us consider the projection

7:R* = M3, W(IO,xl,ZEQ,ZL‘S):([BO—{—ZEB,ZEl,iL‘Z,—?EO—iL‘g),
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mapping the line C* to the origin. At this point one may identify M3
to the quotient space R*/ ~ modulo the equivalence relation

a~b<=b-acC(C
under the bijection
[a(mod ~)— (a”+4d’, ', a*, —a’ —a’) € M?

(with respect to which the projections 7 and R* — R*/ ~ agree).

L. Koch’s observation has been completed by E. Barletta et al. (cf.
[1]) with the construction of a principal bundle R — G2 — M3 whose
total space is Godel’s universe. Precisely, there is a free action of R
(the additive reals) on R*

(a,5) ER*xR+——a-s=a+ (s, 0,0, —s)

and the synthetic object (G2, m, M3 R) is a principal bundle, over
M3, with the structure group R. The set

o) M3 — R47 O-)\(p) = (A(p)v Zlﬁ'l, 12 ) _:L,S - )‘(p)) )
p= (—xg, x) eM, x= (xl, 2, mg) e R?,
A : M? — R an arbitrary function,

consists of all the global sections in the principal bundle R — R* —
M3, Also o) € C*(M?,R?*) if and only if A € C°>°(M?). In particular
for A = 0 one has a canonical section oy € C°°(M?3 R*). Integration
along the fibers is described as follows.

Theorem 1. Let J C R be a bounded open interval and D CC M3 a
relatively compact domain. Let

Q=0¢(D)- T ={oo(p)-s:peD, s T}
Then Q C R* is a relatively compact domain and

T
vom)dv, = —— u 60 N do
/Q( ) 4%, av?2 Jp

for every continuous function u € C(D), where |J| is the length of J.
Also 0 is the real 1-form on M? given by

0 = da® — e da?
with respect to the global chart
x: M} =R (% x)=x, (2% x)e M.
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3. THE CR STRUCTURE T} o(M?)

Let Z € C=(T(M?) ® C) be the complex vector field given by

0 1 0 0
g Y i/t L 9
Ox! V2 (e Ox? * 81’3)
with respect to the global chart y = (x!, 2%, 23) : M3 — R3 in Theorem
1. Then (cf. L. Koch, [2])

Theorem 2.

i) The span of Z is a CR structure Ty o(M?) on M?3.

ii) The real differential 1-form 60 € QY(M?3) given by 0 = dx® —
e 2 (with respect to x) is a pseudohermitian structure on the CR
manifold (M3, Ty o(M?)) and the corresponding Levi form is Lo(Z, Z) =
av2. Consequently Ty o(M?) is nondegenerate and 6 is positively ori-
ented.

iii) The Reeb vector of (M?3,0) is T = 0/0x3.

iv) The mazimally complex distribution H(M?) is the projection of
K+ CcT(GY) by m: R — M3.

Let us consider the maps
VR — C*, U(x)=(z,w),
o TR o |
Z = exp {5 (—x —HEI)], w:—ﬁx +e ,
VM —Hy, ¢=f"oV,
fiH, = 0S8y, f(zt)= (2 t+ilz]*), (zt)€H,,

where H; = C x R is the Heisenberg group and Sy C C? is the Siegel
domain. Then

v) ¥ is a local CR isomorphism of (M?, Ty o(M?)) and Hy; \ R with
the CR structure induced by Ty o(Hy).



6 SORIN DRAGOMIR

4. WAVE MAPS

Let (N, h) be a Riemannian manifold and Q2 C R* a relatively com-
pact domain. Let us consider the functional

1
Eq: C®(R* N) - R, Eq(®) = 5 / trace, (P*h) dvy, .
Q

A wave map ® : G} — N is a critical point ® € C°(R*, N) of Eq for
every 0 CC R*. That is

d
G (Ea (@)}, =0

for any smooth 1-parameter variation {®,}yy< C C*(R*, N) of @ (i.e.
®y = @) supported in Q2 i.e. Supp(V) C Q where V€ C>®(d'T(N))
is the infinitesimal variation induced by {®;}yj<..

The first variation formula is

G B (@) = = [ 1 (7, (@) du,

i i i 0%’ 9o*
7(@) =~ + (T 0 @) 20 g,
1=l = 00000 D), By =
nv ) 72 a\Yu, Uv), “w Ok )
2 2 2 2
T — Ou O _ gp—2aal Ou 8u+
(02 O(z!)2 (22 O(z5)2
2
P 0*u ou

9200z2 " oat
Theorem 3. The pushforward of the wave operator O of G2 by 7 :
Gi — M3 is given by
Q@
) u=—MNu, ueC*(M?),
(m.0) Vo (M?)

where Ay is the sublaplacian of (M?3,0) i.e.

ou
A = —vV2 ——
b oxl

J(z1)? e 0(x?)? e Ox? Ox® 2 0(x3)?

(0%

_ﬁ{ 0%u 20" 0*u Cael O%u 0*u }
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5. SUBELLIPTIC HARMONIC MAPS

A map ¢ € C®(M3, N) is sbelliptic harmonic if ¢ is a critical point
of the functional

Ep(¢) = %/Dtracege (Ilg¢™h) 6 A dO

with respect to smooth 1-parameter variations of ¢ supported in D, for
any relatively compact domain D CC M3, where Gy is the (real) Levi
form of (M?3,0) and Iz ¢*h is the restriction of ¢*h to H(M)® H(M).
The first variation formula is

% {Ep (¢)}io = — /D he(V, 1(0)) 0 A db,

v (%)t:o L n(e) € CR(GTIT(N)),

2
n(0) = —Lod + > (T 0 6) Xul) Xu(@)F, Z =X, —iXa.
a=1

Theorem 4. The vertical lift ® = ¢ o w of any subelliptic harmonic
map ¢ of the pseudohermitian manifold (M3,0) into a Riemannian
manifold N is a wave map. Conversely, the base map associated to
any R-invariant wave map ® : G2 — N is subelliptic harmonic.

6. DEGENERATE ELLIPTIC JACOBI OPERATOR

Let shave(M?, N) be the set of all subelliptic harmonic maps from
the pseudohermitian manifold (M?3,6) into the Riemannian manifold
(N, h). Given ¢ € shave(M3, N) the rough sublaplacian is

2
Apv ==Y AP D4 v-DE v verT (6T T(N)),
a=1
where V is the Tanaka-Webster connection of (M3,0). Also D¢ =
¢~1V" is the pullback of V" (the Levi-Civita connection of (N, h)) by
¢ (a connection in the vector bundle ¢~ 'T(N) — M?). The symbol of
Af is
72 (A7) v = [l = gi, (@, 0,)] v
we T;(M)\{0}, ve(¢7'TN) , pedr

showing that Af is a degenerate elliptic operator (ellipticity degener-
ates in the cotangent directions 6,, p € M?). The subelliptic Jacobi
operator is

J) 0 (¢7'TN) — C= (¢7'TN) ,
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Jlf’v = Afv — traceg, [HH(Rh)¢(V, G ) s } ,
velC™ ((b’lTN) )

Jf differs from Af by a 0 order operator, so it has the same symbol
(hence it is degenerate elliptic as well). The Hessian of Ep at ¢ €
shave(M3, N) is

Hessy, (Ep), (v, W) = / he(JPv, w) 6 A db,
D

Dcc M?, v,weC>® (¢ 'TN).

One may also introduce the indez ind,(¢) to be the supremum of the
set of dimensions dimg S where S ranges over the subspaces S C
Cs° (D, ¢~'T'N) such that Hess,(Ep)s(v,v) < 0 for any v € S\{0}. A
theory of stability of subelliptic harmonic maps ¢ € shave(M?, N) may
be developed on these lines because it can be shown that the following
second variation formula holds

82
m {ED (gbs,t)}s:t:o = Hessy, (ED) (Va W)>
{¢s,t}—e<s,t<e C COO<M37 N)7 ¢0,0 = ¢7

0
Supp [p c M3 —s (dpspf) (a) ] C D, |t|<e |s|<e,
(pss,t)

fiM? x (=€ €) x (—e,€) = N, f(p,s,t) = dss(p),

V — (a¢s,t> 7 W _ <a¢s,t) )
at s=t=0 at s=t=0

7. SPECTRUM OF J;

The starting point of the stability theory for harmonic maps from a
compact Riemannian manifold is to show that the Jacobi operator (of
the given harmonic map) has a discrete spectrum. A subelliptic analog,

holding for the subelliptic Jacobi operator J,? of ¢ € share(M3, N), by
solving the L? Dirichlet problem

JJV=F in D, V=0 on dD,

for any F' € L* (D, $~'TN). The L? or generalized, formulation of
the Dirichlet problem above relies on the formula

ap=[(09)"] o (09)"



INVARIANT WAVE MAPS FROM GODEL’S UNIVERSE 9
where (D¢)H V is the restriction of DV to H(M?3) and [(D‘f’)H] is
the formal adjoint of

(D) - C>=(D,¢'TN) = C=(D, H(M®)* ® ¢"'TN).

Precisely to solve the generalized Dirichet problem is to prove the ex-
istence of V € W% (D, ¢~*TN) such that

((D¢)Hv ) (D¢)HS>L2 -

—/ h? (traceg, [IIg(R")?(V, ¢s-)ps-], S) O AdO = (F,S)p2

for any S € W4*(D, ¢~ 'TN).

Theorem 5. Let (N, h) be a Riemannian manifold of non-positive sec-
tional curvature, such that

(2) IR (A, B)CI < AIIAIIBIICIl, A, B,C € X(N),

for some constant v > 0. Let ¢ € shat(M?3, N) and D C M? a bounded
domain supporting the Poincaré inequality

< / ||V||29Ad9) sc( / ||<D¢>HV||29Ade) |
D D

Ve WL (D, ¢ 'TN).
For any F € L*(D,¢ YT N) there is a unique generalized solution Vi €
Wi2(D, ¢~'T'N) to the L* Dirichlet problem for J{ on D.

The estimate (2) holds for any space of constant curvature N =
N™(k) with v = 2|k|. Let us set

oV, W) = /D (1) (D*YV | (%)W)~
—h? (traceg, [ILg(R")*(V, ¢u)du-], W)} 6 A d6,

1 :
FV)=5aV.W) = (F V)2, Ve WEA(D, ¢~'TN).

Poincaré inequality is crucially used in several places, and in particular
to show that W;I’2(D, ¢ 'T'N) is a Hilbert space with the inner product

(V. W)gyre = (D)*V, (D*)W)

(just the derivatives, rather than the inner product on Wy*(D, ¢~ 'T'N)
where one adds the term (V, W)2). The main ingredient is to show (by
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taking into account the curvature properties of V) that the functional
F is strictly convex and

lim F = +oc.

||V||‘;V11{,2HOO

As a consequence of Theorem 5 we may consider the Green operator
G:L*(D, $'TN)— L*(D, ¢ 'TN), G(F)= Vg,
whose range obeys to
R(G) c WD, ¢ 'TN).
The domain D C M?3 is said to satisfy the Kondrakov condition if the
inclusion )
WA (D, ¢ ' TN) < L*(D, ¢ 'TN)
is compact. Under the assumptions of Theorem 5, for any domain
D C M? satisfying Kondrakov’s condition the Green operator G' of Jl?
is 1) linear, ii) continuous, iii) self-adjoint, and iv) compact.

8. GENERALIZED DIRICHLET EIGENVALUE PROBLEM FOR .J;

The Dirichlet eigenvalue problem for Jlf’ is
JV=AV in D, V=0 on dD.

To solve a weak, or generalized, version of this problem is to determine
AeRand V € W5*(D, ¢ 'TN) such that

a(V,8)=A(V,S)2, SeWL(D,¢ 'TN).

Let crgen(Jl;z> ) and o(G) be respectively the spectrum of the generalized
Dirichlet eigenvalue problem for Jg’ and the spectrum of G. One may

certainly relate oge,(J) and o(G) (the map is A — 1/)) and then use
i) the established properties of the Green operator and ii) standard
theorems in functional analysis to get

Theorem 6. Let ¢ € shav(M?3,N). Let D C M? be a bounded domain
supporting Poincaré’s inequality and satisfying Kondrakov’s compact-
ness. Let N be a Riemannian manifold satisfying the curvature restric-
tions in Theorem 5. There is an infinite sequence

O< A<l < T 40
and an infinite sequence {V, }ns1 C Wi2(D, ¢ T N) such that
Ogen(JY) = (M i > 1}, a(Vi, S) = M(Vi, S)p2, n> 1,
for any S € WLA(D, ¢~ TN).



