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Abstract. Gödel’s metric is a solution g↵ to the Einstein field
equations, with cosmological constant, in the presence of an in-
coherent matter distribution. Gödel’s universe G4

↵ =
�

R4 , g↵
�

is
the total space of a principal bundle R ! G4

↵ ! M3 over a 3-
dimensional nondegenerate CR manifold M3 = G4

↵/K got as the
space of orbits of a null Killing vector field K on G4

↵. Invariant
wave maps � : G4

↵ ! N are precisely the vertical lifts of subelliptic
harmonic maps � : M3 ! N . For every such � we solve the L2

Dirichlet problem for the (degenerate elliptic) Jacobi operator J�
b

and prove that J�
b has a discrete spectrum.

1. Why wave maps from G4
↵?

We start with a few motivational remarks1 bringing into the picture
wave maps from Gödel’s universe. Gödel’s metric

g↵ = �
⇣

dx0 + e↵x
1
dx2

⌘2

+ (dx1)2 +
1

2
e2↵x

1
(dx2)2 + (dx3)2

is a solution to Einstein’s field equations for an incoherent matter dis-
tribution at rest

Rµ⌫ + ⇤gµ⌫ �
1

2
R(g) gµ⌫ =

8⇡

c2
Tµ⌫ ,

T µ⌫ = ⇢ vµv⌫ , (vµ) ⌘ (1, 0, 0, 0),

⇤ = �↵
2

2
,

↵2

⇢
=

8⇡

c2
,

and the field equations are the Euler-Lagrange equations of the varia-
tional principle � S⌦(g) = 0 where

S⌦(g) =

Z

⌦



R(g)� 2⇤+
16⇡

c2
L

�

dvg
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where L is the Lagrangian density of matter (including all non-gravita-
tional fields). According to Mach’s principle the distribution of matter
in a region of the universe should uniquely determine the geometry
of that region. Yet the very same field equations above admit other
solutions, such as Einsten’s static solution, possessing drastically dif-
ferent geometric/physical properties. Consequently, Mach’s principle
may not be embodied into General Relativity on the ground of the field
equations alone.

Brans-Dicke theory is a modification of General Relativity aiming to
incorporate Mach’s principle into General Relativity. A bit of heuristics
is in order, to ”derive” Brans-Dicke’s modified action S⌦(g, �) from
S⌦(g). Let us look at the case where the cosmological constant is
⇤ = 0 and divide formally by G = c2

Z

⌦



G�1R(g) +
16⇡

c4
L

�

d vg ,

let G vary as a function of a scalar field � : R4 ! R i.e. take G�1 = �,
and add the Lagrangian density of that scalar field

(1)

Z

⌦



�R(g) +
16⇡

c4
L� !

�
gµ⌫�|µ�|⌫

�

d vg .

Cf. C. Brans and R.H. Dicke, [1]. As a further generalization of S⌦(g)
[with ⇤ = 0 and L = 0] S. Ianuş and M. Vişinescu allowed (cf. [2])
for more general values of � i.e. assumed that � : R4 ! N where N
is an arbitrary Riemannian manifold, with the Riemannian metric h,
and replaced the Lagrangian density of the scalar field by the trace of
the bilinear form �⇤h with respect to g. Their action reads

S⌦(g, �) =
1

2

Z

⌦



�R(g)

2
+

1

�2
gµ⌫�i

|µ�
j
|⌫ hij � �

�

d vg

where �2 is a constant expressing the strength of the self-coupling of
the scalar fields �i (1  i  dim(N)). Note that ��1gµ⌫�|µ�|⌫ in (1)
is the trace Traceg (�⇤h) with h = t�1 dt⌦ dt (a Riemannian metric on
N = R). The Euler-Lagrange equations of � S⌦(g,�) = 0 are

Rµ⌫ =
2

�2
�i

|µ�
j
|⌫ hij � � ,

�⇤�i +
�

�i
jk � �

�

�j
|µ�

k
|⌫ g

µ⌫ = 0.

The second set of field equations is the familiar harmonic maps system
and � : R4 ! N is a wave map for any extremal point (g,�) of the
action. We speculate that Brans-Dicke’s theory, eventually compatible
with Mach’s principle, should be applied to Gödel’s universe G4

↵ ⌘
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(R4 , g↵), allowing for more general values of � as in S. Ianuş and M.
Vişinescu’s work. The subject of this talk is the mathematical analysis
of a particular class of wave maps � : G4

↵ ! N .
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2. The principal bundle R ! G4
↵ ! M3

The vector field

K =
@

@x0
� @

@x3

is null [i.e. g↵(K,K) = 0] and Killing (i.e. LKg↵ = 0). The leaf space
G4
↵/K (the space of all maximal integral curves ofK) admits a C1 man-

ifold structure and a nondegenerate CR structure. This may be learned
from L. Koch (cf. [2]) yet appears to be known much earlier in physics
(cf. I. Robinson, [3]): one may associate a natural 3-dimensional CR
manifold to every Lorentzian manifold carrying a shear-free null ge-
odesic congruence. Cf. also I. Robinson and A. Trautman, [4], who
explain the phenomenon in terms of flag geometries. Originality in L.
Koch’s work (cf. op. cit.) is therefore confined to the nevertheless
useful observation that the quotient space G4

↵/K may be realized as
the hyperplane M3 ⇢ R4 of equation

x0 + x3 = 0

and to the explicit construction of a CR structure on M3. This may
be briefly described as follows. Straightforward integration of K shows
that its maximal integral curves are the lines

�a(s) = s (e0 � e3) + a, s 2 R, a 2 R4 ,

hence
R4/K = {�a : a 2 R}, �a = �a(R).

One observes that
�a = �b () b� a 2 C1

where C1 is the line of equations

x0 + x3 = 0, x1 = x2 = 0.

Let us consider the projection

⇡ : R4 ! M3 , ⇡
�

x0 , x1 , x2 , x3
�

=
�

x0 + x3 , x1 , x2 , �x0 � x3
�

,
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mapping the line C1 to the origin. At this point one may identify M3

to the quotient space R4/ ⇠ modulo the equivalence relation

a ⇠ b () b� a 2 C1

under the bijection

[a](mod ⇠) 7�!
�

a0 + a3 , a1 , a2 , �a0 � a3
�

2 M3

(with respect to which the projections ⇡ and R4 ! R4/ ⇠ agree).
L. Koch’s observation has been completed by E. Barletta et al. (cf.

[1]) with the construction of a principal bundle R ! G4
↵ ! M3 whose

total space is Gödel’s universe. Precisely, there is a free action of R
(the additive reals) on R4

(a, s) 2 R4 ⇥ R 7�! a · s = a+ (s, 0, 0, �s)

and the synthetic object (G4
↵ , ⇡, M

3 , R) is a principal bundle, over
M3, with the structure group R. The set

�� : M3 ! R4 , ��(p) =
�

�(p), x1, x2 ,�x3 � �(p)
�

,

p =
�

�x3 , x
�

2 M3 , x =
�

x1, x2, x3
�

2 R3 ,

� : M3 ! R an arbitrary function,

consists of all the global sections in the principal bundle R ! R4 !
M3. Also �� 2 C1(M3,R4) if and only if � 2 C1(M3). In particular
for � = 0 one has a canonical section �0 2 C1(M3,R4). Integration
along the fibers is described as follows.

Theorem 1. Let J ⇢ R be a bounded open interval and D ⇢⇢ M3 a
relatively compact domain. Let

⌦ = �0(D) · J = {�0(p) · s : p 2 D, s 2 J }.

Then ⌦ ⇢ R4 is a relatively compact domain and
Z

⌦

(u � ⇡) d vg↵ =
|J |
↵
p
2

Z

D

u ✓ ^ d✓

for every continuous function u 2 C(D), where |J | is the length of J .
Also ✓ is the real 1-form on M3 given by

✓ = dx3 � e↵x
1
dx2

with respect to the global chart

� : M3 ! R3 , �(x0, x) = x, (x0, x) 2 M3.
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3. The CR structure T1,0(M3)

Let Z 2 C1(T (M3)⌦ C) be the complex vector field given by

Z =
@

@x1
+ i

p
2

✓

e�↵x1 @

@x2
+

@

@x3

◆

with respect to the global chart � = (x1, x2, x3) : M3 ! R3 in Theorem
1. Then (cf. L. Koch, [2])

Theorem 2.
i) The span of Z is a CR structure T1,0(M3) on M3.
ii) The real di↵erential 1-form ✓ 2 ⌦1(M3) given by ✓ = dx3 �

e↵x
1
dx2 (with respect to �) is a pseudohermitian structure on the CR

manifold (M3, T1,0(M3)) and the corresponding Levi form is L✓(Z,Z) =
↵
p
2. Consequently T1,0(M3) is nondegenerate and ✓ is positively ori-

ented.
iii) The Reeb vector of (M3, ✓) is T = @/@x3.
iv) The maximally complex distribution H(M3) is the projection of

K? ⇢ T (G4
↵) by ⇡ : R4 ! M3.

Let us consider the maps

 : R4 ! C2 ,  (x) = (z, w),

z = exp



↵

2

✓

�x1 + i
1p
2
x3

◆�

, w = � ↵p
2
x2 + i e�↵x1

,

 : M3 ! H1 ,  = f�1 � ,

f : H1 ! @S2 , f(z, t) = (z, t+ i |z|2), (z, t) 2 H1 ,

where H1 = C ⇥ R is the Heisenberg group and S2 ⇢ C2 is the Siegel
domain. Then

v)  is a local CR isomorphism of (M3, T1,0(M3)) and H1 \ R with
the CR structure induced by T1,0(H1).
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4. Wave maps

Let (N, h) be a Riemannian manifold and ⌦ ⇢ R4 a relatively com-
pact domain. Let us consider the functional

E⌦ : C1(R4, N) ! R, E⌦(�) =
1

2

Z

⌦

traceg (�
⇤h) d vg .

A wave map � : G4
↵ ! N is a critical point � 2 C1(R4, N) of E⌦ for

every ⌦ ⇢⇢ R4. That is

d

dt
{E⌦ (�t)}t=0 = 0

for any smooth 1-parameter variation {�t}|t|<✏ ⇢ C1(R4, N) of � (i.e.
�0 = �) supported in ⌦ i.e. Supp(V) ⇢ ⌦ where V 2 C1(��1T (N))
is the infinitesimal variation induced by {�t}|t|<✏.

The first variation formula is

d

dt
{E⌦ (�t)}t=0 = �

Z

⌦

h� (V, ⌧(�)) d vg↵ ,

⌧(�)i = �⇤�i +
�

�i
jk � �

� @�j

@xµ

@�k

@x⌫
gµ⌫ ,

[gµ⌫ ] = [gµ⌫ ]
�1 , gµ⌫ = g↵ (@µ , @⌫) , @µ =

@

@xµ
,

⇤u =
@2u

@(x0)2
� @2u

@(x1)2
� 2e�2↵x1 @2u

@(x2)2
� @2u

@(x3)2
+

+4e�↵x1 @2u

@x0 @x2
� ↵

@u

@x1
.

Theorem 3. The pushforward of the wave operator ⇤ of G4
↵ by ⇡ :

G4
↵ ! M3 is given by

(⇡⇤⇤) u =
↵p
2
�bu, u 2 C2(M3),

where �b is the sublaplacian of (M3, ✓) i.e.

�bu = �
p
2
@u

@x1
�

�
p
2

↵

⇢

@2u

@(x1)2
+ 2e�2↵x1 @2u

@(x2)2
+ 4e�↵x1 @2u

@x2 @x3
+ 2

@2u

@(x3)2

�

.
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5. Subelliptic harmonic maps

A map � 2 C1(M3, N) is sbelliptic harmonic if � is a critical point
of the functional

ED(�) =
1

2

Z

D

traceG✓
(⇧H�

⇤h) ✓ ^ d✓

with respect to smooth 1-parameter variations of � supported in D, for
any relatively compact domain D ⇢⇢ M3, where G✓ is the (real) Levi
form of (M3, ✓) and ⇧H�

⇤h is the restriction of �⇤h to H(M)⌦H(M).
The first variation formula is

d

dt
{ED (�t)}t=0 = �

Z

D

h�(V, ⌧b(�)) ✓ ^ d✓,

V =

✓

@�t

@t

◆

t=0

, ⌧b(�) 2 C1(��1T (N)),

⌧b(�)
i = ��b�

i +
2
X

a=1

�

�i
jk � �

�

Xa(�
j)Xa(�)

k , Z = X1 � iX2 .

Theorem 4. The vertical lift � = � � ⇡ of any subelliptic harmonic
map � of the pseudohermitian manifold (M3, ✓) into a Riemannian
manifold N is a wave map. Conversely, the base map associated to
any R-invariant wave map � : G4

↵ ! N is subelliptic harmonic.

6. Degenerate elliptic Jacobi operator

Let share(M3, N) be the set of all subelliptic harmonic maps from
the pseudohermitian manifold (M3, ✓) into the Riemannian manifold
(N, h). Given � 2 share(M3, N) the rough sublaplacian is

��
bv = �

2
X

a=1

n

D�
Xa

D�
Xa

v �D�
rXaXa

v
o

, v 2 C1 �

��1T (N)
�

,

where r is the Tanaka-Webster connection of (M3, ✓). Also D� =
��1rh is the pullback of rh (the Levi-Civita connection of (N, h)) by
� (a connection in the vector bundle ��1T (N) ! M3). The symbol of
��

b is

�2

⇣

��
b

⌘

!
v =

⇥

k!k2 � g⇤✓,p (! , ✓p)
⇤

v,

! 2 T ⇤
p (M

3) \ {0}, v 2
�

��1TN
�

p
, p 2 M3,

showing that ��
b is a degenerate elliptic operator (ellipticity degener-

ates in the cotangent directions ✓p, p 2 M3). The subelliptic Jacobi
operator is

J�
b : C1 �

��1TN
�

! C1 �

��1TN
�

,
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J�
b v = ��

bv � traceG✓

⇥

⇧H(R
h)�(v, �⇤ · )�⇤ ·

⇤

,

v 2 C1 �

��1TN
�

.

J�
b di↵ers from ��

b by a 0th order operator, so it has the same symbol
(hence it is degenerate elliptic as well). The Hessian of ED at � 2
share(M3, N) is

Hessb (ED)� (v,w) =

Z

D

h�(J�
b v,w) ✓ ^ d✓,

D ⇢⇢ M3 , v, w 2 C1 �

��1TN
�

.

One may also introduce the index indb(�) to be the supremum of the
set of dimensions dimR S where S ranges over the subspaces S ⇢
C1

0 (D, ��1TN) such that Hessb(ED)�(v,v) < 0 for any v 2 S\{0}. A
theory of stability of subelliptic harmonic maps � 2 share(M3, N) may
be developed on these lines because it can be shown that the following
second variation formula holds

@2

@s @t
{ED (�s,t)}s=t=0 = Hessb (ED) (V,W ),

{�s,t}�✏<s,t<✏ ⇢ C1(M3, N), �0,0 = �,

Supp

"

p 2 M3 7�! (d(p,s,t)f)

✓

@

@t

◆

(p,s,t)

#

⇢ D, |t| < ✏, |s| < ✏,

f : M3 ⇥ (�✏, ✏)⇥ (�✏, ✏) ! N, f(p, s, t) = �s,t(p),

V =

✓

@�s,t

@t

◆

s=t=0

, W =

✓

@�s,t

@t

◆

s=t=0

.

7. Spectrum of J�
b

The starting point of the stability theory for harmonic maps from a
compact Riemannian manifold is to show that the Jacobi operator (of
the given harmonic map) has a discrete spectrum. A subelliptic analog,
holding for the subelliptic Jacobi operator J�

b of � 2 share(M3, N), by
solving the L2 Dirichlet problem

J�
b V = F in D, V = 0 on @D,

for any F 2 L2 (D, ��1TN). The L2, or generalized, formulation of
the Dirichlet problem above relies on the formula

��
b =

h

�

D�
�H
i⇤

�
�

D�
�H
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where
�

D�
�H

V is the restriction of D�V to H(M3) and
h

�

D�
�H
i⇤

is

the formal adjoint of
�

D�
�H

: C1(D,��1TN) ! C1(D, H(M3)⇤ ⌦ ��1TN).

Precisely to solve the generalized Dirichet problem is to prove the ex-
istence of V 2 W̊ 1,2

H (D, ��1TN) such that
�

(D�)HV , (D�)HS
�

L2 �

�
Z

D

h�
�

traceG✓

⇥

⇧H(R
h)�(V, �⇤ · )�⇤ ·

⇤

, S
�

✓ ^ d✓ = (F, S)L2

for any S 2 W̊ 1,2
H (D, ��1TN).

Theorem 5. Let (N, h) be a Riemannian manifold of non-positive sec-
tional curvature, such that

(2) kRh(A,B)Ck  �kAk kBk kCk, A,B, C 2 X(N),

for some constant � > 0. Let � 2 shar(M3, N) and D ⇢ M3 a bounded
domain supporting the Poincaré inequality

✓

Z

D

kV k2 ✓ ^ d✓

◆

1
2

 C

✓

Z

D

k(D�)HV k2 ✓ ^ d✓

◆

1
2

,

V 2 W̊ 1,2
H (D, ��1TN).

For any F 2 L2(D,��1TN) there is a unique generalized solution VF 2
W̊ 1,2

H (D, ��1TN) to the L2 Dirichlet problem for J�
b on D.

The estimate (2) holds for any space of constant curvature N =
Nm(k) with � = 2|k|. Let us set

a(V,W ) =

Z

D

�

(h�)⇤((D�)HV , (D�)HW )�

�h�
�

traceG✓

⇥

⇧H(R
h)�(V, �⇤ · )�⇤ ·

⇤

, W
� 

✓ ^ d✓,

F(V ) =
1

2
a(V,W )� (F, V )L2 , V 2 W̊ 1,2

H (D, ��1TN).

Poincaré inequality is crucially used in several places, and in particular
to show that W̊ 1,2

H (D,��1TN) is a Hilbert space with the inner product

(V,W )W̊ 1,2
H

=
�

(D�)HV , (D�)HW
�

L2

(just the derivatives, rather than the inner product onW 1,2
H (D,��1TN)

where one adds the term (V,W )L2). The main ingredient is to show (by
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taking into account the curvature properties of N) that the functional
F is strictly convex and

lim
kV k

W̊
1,2
H

!1
F = +1.

As a consequence of Theorem 5 we may consider the Green operator

G : L2(D, ��1TN) ! L2(D, ��1TN), G(F ) = VF ,

whose range obeys to

R(G) ⇢ W̊ 1,2
H (D,��1TN).

The domain D ⇢ M3 is said to satisfy the Kondrakov condition if the
inclusion

W̊ 1,2
H (D,��1TN) ,! L2(D,��1TN)

is compact. Under the assumptions of Theorem 5, for any domain
D ⇢ M3 satisfying Kondrakov’s condition the Green operator G of J�

b

is i) linear, ii) continuous, iii) self-adjoint, and iv) compact.

8. Generalized Dirichlet eigenvalue problem for J�
b

The Dirichlet eigenvalue problem for J�
b is

J�
b V = �V in D, V = 0 on @D.

To solve a weak, or generalized, version of this problem is to determine
� 2 R and V 2 W̊ 1,2

H (D,��1TN) such that

a(V, S) = � (V, S)L2 , S 2 W̊ 1,2
H (D,��1TN).

Let �gen(J
�
b ) and �(G) be respectively the spectrum of the generalized

Dirichlet eigenvalue problem for J�
b and the spectrum of G. One may

certainly relate �gen(J
�
b ) and �(G) (the map is �! 1/�) and then use

i) the established properties of the Green operator and ii) standard
theorems in functional analysis to get

Theorem 6. Let � 2 shar(M3, N). Let D ⇢ M3 be a bounded domain
supporting Poincaré’s inequality and satisfying Kondrakov’s compact-
ness. Let N be a Riemannian manifold satisfying the curvature restric-
tions in Theorem 5. There is an infinite sequence

0 < �1  �2  · · ·�b  · · · " +1
and an infinite sequence {Vn}n�1 ⇢ W̊ 1,2

H (D,��1TN) such that

�gen(J
�
b ) = {�n : n � 1}, a(Vn, S) = �n(Vn, S)L2 , n � 1,

for any S 2 W̊ 1,2
H (D,��1TN).


