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Abstract

Minimal immersions of a compact Riemannian homogeneous manifold into
round spheres, or spherical minimal immersions for short, or “spherical soap
bubbles,” belong to a fast growing and fascinating area between algebra and
geometry. This theory has rich interconnections with a variety of mathematical
disciplines such as representation theory, convex geometry, harmonic maps,
minimal surfaces, and orthogonal multiplications. In this survey we browse
thorugh some of the developments of the theory in the last thirtysome years.
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1 Eigenmaps, Minimal Immersions, and Moduli

Let M be a compact Riemannian homogeneous manifold, and λ an eigenvalue of
the Laplace-Beltrami operator 4 acting on C∞(M). Let Hλ ⊂ C∞(M) denote the
eigenspace corresponding to the eigenvalue λ. A (spherical) λ-eigenmap f : M → SV
into the unit sphere SV of a Euclidean vector space V is a map whose components
α ◦ f , α ∈ V ∗, belong to Hλ. A λ-eigenmap f : M → SV is called full if it has no
zero component, that is, its image is not contained in any proper great sphere of SV .
Two λ-eigenmaps f1 : M → SV1 and f2 : M → SV2 are called congruent if f2 = U ◦ f1

for some linear isometry U : V1 → V2.

Remark. λ-eigenmaps are harmonic in the sense of Eells-Sampson with constant
energy-density λ/2.

The archetype of a λ-eigenmap is the Dirac delta map δλ : M → SH∗
λ

whose compo-
nents (with respect to a scaled L2-orthonormal basis onHλ

∼= H∗λ) are L2-orthonormal.
(We usually fix an ortonormal basis and identify Hλ with its dual.)

Remark. For M = S2 = SO(3)/SO(2) and λk = k(k + 1), k ≥ 1, the Dirac
delta map is the classical Veronese maps Verk : S2 → S2k = SHλk . In particular,

Ver2 : S2 → S4 factors through the antipodal map of S2 and gives an imbedding of
the real projective plane RP 2 into S4 with image as the classical Veronese surface.

Given a full λ-eigenmap f : M → SV , there is a unique surjective linear map A :
Hλ → V such that f = A ◦ δλ. Associating to (the conguence class of) f the
symmetric endomorphism 〈f〉 = A> · A − I ∈ S2(Hλ) gives rise to the DoCarmo-
Wallach parametrization of the set of (congruence classes of) full λ-eigemaps with
the compact convex body

Lλ = {C ∈ Eλ |C + I ≥ 0},

of a certain linear subspace Eλ of the space of traceless symmetric endomorphisms
S2

0(Hλ) ⊂ S2(Hλ). (Here ≥ stands for positive semi-definite.) Eλ is defined by certain
orthogonality relations in terms of the Dirac delta map. Lλ is called the moduli for
λ-eigenmaps.

Assuming that M is isotropy irreducible, a conformal λ-eigenmap f : M → SV is
called a spherical minimal immersion. The conformality factor is then λ/ dimM
and f is an isometric minimal immersion of M into SV with respect to λ/ dimM -
times the original metric on M . Due to isotropy irreducibility, the Dirac delta map
is automatically conformal so that the DoCarmo-Wallach parametrization applies.
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We obtain that the set of (congruence classes of) spherical minimal immersions with
conformality factor λ/ dimM can be parametrized by the compact convex body

Mλ = {C ∈ Fλ |C + I ≥ 0},

where Fλ ⊂ Eλ ⊂ S2
0(Hλ) is a linear subspace defined defined by certain orthogonality

relations in terms of the differential of the Dirac delta. Mλ is called the moduli for
spherical minimal immersions (with conformality λ/ dimM).

Remark. Beyond the fact that the moduli Lλ and Mλ are convex bodies in their
ambient linear spans Eλ and Fλ, very little are known about their structures.

2 The G-Module Structure of Eλ and Fλ,
the Dimensions of Eλ and Mλ

If G is a transitive Lie group of isometries of M , then the eigenspace Hλ carries a
natural G-module structure, and Eλ and Fλ are G-submodules with respect to the
extended G-module structure on S2

0(Hλ). On the level of the spherical maps, this G-
action is given by precomposition so that the moduli Lλ and Mλ are also naturally
G-invariant.

For a compact rank one symmetric space M = G/K (K ⊂ G), the eigenspaces Hλ

are irreducible, and the structure of the quotient S2
0(Hλ)/Eλ, in particular, dim Eλ is

known. In fact, the finite sums of productsHλ·Hλ of functions inHλ is aG-submodule
of S2(Hλ), and

Eλ = S2(Hλ)/(Hλ · Hλ).

If {λk}k≥1 denotes the sequence of eigenvalues in increasing order, then we have

Hλk · Hλk =

{ ∑k
i=0Hλ2i if M = Sm∑2k
i=0Hλi otherwise

Combining these gives dim Eλ = dimLλ.

For the Euclidean sphere M = Sm and G = SO(m + 1), we write Hk
m = Hλk ,

Ekm = Eλk , etc. The decomposition of Ekm into irreducible SO(m+ 1)-components (in
terms of highest weights) has been determined. For 0 ≤ l ≤ [k/2], we let ∆k

l ⊂ R2

be the closed convex triangle with vertices (2l, 2l), (k, k) and (2(k − l), 2l). We then
have

S2(Hk
m)⊗R C =

∑
(u,v)∈∆k

0 ;u,v even

V (u,v,0,...,0),
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where V v is the complex irreducible SO(m + 1)-module with highest weight vector
v = (v1, . . . , v[(m+1)/2]) ∈ Z[(m+1)/2], [(m+1)/2] = rankSO(m+1) (with respect to the
standard maximal torus providing a coordinate system for the Cartan subalgebra).
With this we have

Ekm ⊗R C =
∑

(u,v)∈∆k
1 ;u,v even

V (u,v,0,...,0).

This shows that the moduli space Lkm parametrizing spherical λk-eigenmaps f : Sm →
SV is nontrival if and only if m ≥ 3 and k ≥ 2. (Triviality of the moduli for m = 2
is known as Calabi’s rigidity of the Veronese maps Verk, k ≥ 1.) The first nontrivial
moduli L2

3, a 10-dimensional convex body, has been described. (See the next section.)

The moduli Mλ has been extensively studied only for the Euclidean m-sphere Sm

and G = SO(m + 1). (This is partially due to the complexity of the decomposition
of Fλ into irreducible components for non-spherical compact rank one symmetric
spaces. For example, for the complex projective space, Fλ fails to have multiplicity
one decomposition.) For M = Sm, we have

Fkm ⊗R C =
∑

(u,v)∈∆k
2 ;u,v even

V (u,v,0,...,0),

With this the decomposition of Fkm into irreducible SO(m+ 1)-components is deter-
mined, in particular, the exact dimension dimMk

m = dimFkm is known.
The moduli Mk

m is nontrivial if and only if m ≥ 3 and k ≥ 4. The first nontriv-
ial moduli M4

3, an 18-dimensional convex body, has been described. (See the next
section.) In general, very little is known about the geometry of the moduli Lkm and
Mk

m.

The degree raising operator gives rise to SO(m + 1)-equivariant linear imbeddings
Lkm → Lk+1

m and Mk
m →Mk+1

m , but the images are only properly contained in linear
slices of Lk+1

m and Mk+1
m .

3 The Equivariant Moduli (Lk3)SU(2) and (Mk
3)
SU(2)

The first nontrivial domain S3 is special in view of the splitting of the acting group
SO(4) = SU(2) ·SU(2)′. The fixed point sets (Lk3)SU(2) and (Lk3)SU(2)′ are linear slices
of Lk3. Moreover, by restriction, they are mutually orthogonal SU(2)′- and SU(2)-
submodules of Lk3. Since they parametrize SU(2)- and SU(2)′-equivariant eigenmaps,
they are called equivariant moduli. Note that SU(2)′ is a conjugate of SU(2) within

4



SO(4), and the module structures on the respective equivariant moduli are isomorphic
via this conjugation.

Remark. We have

dim(Lk3)SU(2) = [k/2](2[k/2] + 3),

dim(Mk
3)SU(2) = (2[k/2] + 5)([k/2]− 1).

Note that both dimensions are O(k2) as k →∞.

Example. The first nontrivial moduli L2
3 is particularly simple, as it is the convex

hull of (L2
3)SU(2) and (L2

3)SU(2)′ . In addition, (L2
3)SU(2) is the convex hull of the SU(2)′-

orbit of the parameter point 〈Hopf 〉 corresponding to the Hopf map Hopf : S3 → S2.
This orbit, in turn, is the real projective plane imbedded into a copy of the 4-sphere
in (E2

3 )SU(2) as a Veronese surface. In particular, dimL2
3 = 2 dim(L2

3)SU(2) = 10.
In a similar vein, M4

3 is the convex hull of the orthogonal 9-dimensional slices
(M4

3)SU(2) and (M4
3)SU(2), but the structure of these slices is more subtle.

Even though much simpler than the full moduli, little is known about the SU(2)-
equivariant moduli (Lk3)SU(2) and (Mk

3)SU(2).

Examples. There is a surprisingly rich variety of eigenmaps in low domain dimen-
sions even in the quadratic case k = 2. Many constructions (based on orthogonal
multiplications using the Hopf-Whitehead construction and variants) have been ob-
tained by T. Zizhou. Resolving a problem posed by J. Eells on the existence and
uniqueness of self eigenmaps of spheres, H. He, H. Ma, and F. Xu showed that up to
congruence there is only one quadratic eigenmap f : S4 → S4. Most recently, F. Wu,
Y. Xiong, and X. Zhao gave a full classification of quadratic eigenmaps f : S7 → S7.

4 Moduli for Harmonic Non-Holomorphic Polyno-

mial Maps Between Complex Projective Spaces

Let Hp,q
m , p, q ≥ 0, denote the complex vector space of harmonic homogeneous poly-

nomials on Cm+1 of bidegree (p, q) (degree p in the complex variables z0, . . . , zm and
degree q in the conjugates z̄0, . . . , z̄m). Then Hp,q

m is an irreducible U(m+ 1)-module;
in fact, it is a U(m + 1)-component of the restriction Hp+q

2m+1 ⊗R C|U(m+1) (with
S2m+1 ⊂ Cm+1 = R2(m+1) being the unit sphere).

A λp+q-eigenmap f : S2m+1 → S2n+1 is said to be a (complex) eigenmap of bidegree
(p, q) if the components of f belong to Hp,q

m . An eigenmap f of bidegree (p, q) fac-
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tors through the canonical projections S2m+1 → CPm and S2n+1 → CP n giving a
harmonic map f̃ : CPm → CP n (which is non-(anti)holomorphic if p, q > 0). The
DoCarmo-Wallach moduli space construction can be adapted to this unitary setting
giving moduli spaces of such eigenmaps. Representation theory of the unitary group
(Littlewood-Richardson type multiplicity formulas due to D. Barbasch) give lower
bounds on the corresponding moduli.

5 Mean Measures of Symmetry for Convex Sets

We introduce a sequence of measures of symmetry {σl}l≥1 for convex bodies à la
Minkowski and Grünbaum. For a convex body L in a Euclidean vector space E , and
a point O in the interior of L, σl(L,O) measures how far the l-dimensional affine
slices of L (through O) are from being symmetric (viewed from O). The measure of
symmetry σl(L,O) is defined as follows.
First, convexity of L implies that any line passing through O intersects the boundary
of L at two antipodal points. If C ∈ ∂L with antipodal Co ∈ ∂L then O splits the
line segment [C,Co] into the ratio

Λ(C,O) =
d(C,O)

d(Co,O)
,

where d is the distance function on E . This defines the distortion function Λ : ∂L →
R. Clearly, Λ(Co,O) = 1/Λ(C,O).
Second, a multi-set {C0, . . . , Cl} ⊂ ∂L is called an l-configuration if the convex hull
[C0, . . . , Cl] contains O. The set of all l-configurations is denoted by Cl(L,O). We
then define

σl(L,O) = inf
{C0,...,Cl}∈Cl(L,O)

l∑
i=0

1

1 + Λ(Ci,O)
. (1)

Clearly, σ1(L,O) = 1. For l = dimL the subscript is suppressed and we write
σ(L,O).

In general, we have

1 ≤ σl(L,O) ≤ l + 1

2
, l ≥ 1.

The lower bound is attained iff L has an l-dimensional simplicial intersection across
O. For l ≥ 2, the upper bound is attained iff L is centrally symmetric with respect
to O.
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A direct consequence of Carathéodory’s theorem is that the sequence {σl}l≥1 is arith-
metic form the l = dimL term onwards.

Remark. The classical Minkowski measure of symmetry is

µ∗(L) = inf
O∈ intL

sup
C∈∂L

Λ(C,O).

We have

lim
l→∞

inf
O∈ intL

σl(L,O)

l + 1
=

1

1 + µ∗(L)
.

6 Mean Measures of Symmetry of the Moduli

The Main Problem: Determine σl(Lλ, 0) and σl(Mλ, 0), l ≥ 2, in particular,
determine these measures for the moduli for the sphere M = Sm and, for m = 3, for
the equivariant SU(2)-moduli.

Remark. The distortion function Λ(C, 0) at a boundary point C ∈ ∂Lλ is the maxi-
mal eigenvalue of C as a symmetric endomorphism ofHλ. To determine the maximum
distortion sup∂Lλ Λ(., 0) (and also for Mλ) is an important unsolved problem. (See
Theorem 1 below.)

Our starting point is the following:

Theorem 1. Let M be a Riemannian homogeneous space. Assume that the eigenspace
Hλ is an irreducible G-submodule. Then, we have

dimLλ + 1

dimHλ

≤ σ(Lλ, 0) =
dimLλ + 1

1 + max∂Lλ Λ(., 0)
≤ dimVmin

dimHλ

(dimLλ + 1),

where f : M → SVmin
is a spherical λ-eigenmap with minimum range dimension. If

M is isotropy irreducible then we have

dimMλ + 1

dimHλ

≤ σ(Mλ, 0) =
dimMλ + 1

1 + max∂Mλ
Λ(., 0)

≤ dimVmin

dimHλ

(dimMλ + 1),

where f : M → SVmin
is a spherical minimal immersion (inducing λ/ dimM times the

metric on M) with minimum range dimension. In either case above if equality holds
in the upper estimate then the respective map f : M → SVmin

has L2-orthonormal
components (up to scaling and with respect to an orthonormal basis in Vmin).
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Remaks. As noted above, for compact rank one symmetric spaces M the eigenspaces
Hλ are irreducible so that Theorem 1 applies. As in the remark above, to calculate
the measures of symmetry σ(Lλ, 0) and σ(Mλ, 0) one would need to determine the
maximum distortion.
To obtain nontrivial upper bounds one needs to look for minimal ranges for which
dimVmin < dimHλ/2. To determine the minimal range dimension for eigenmaps and
spherical minimal immersions is the so-called DoCarmo problem. In general, even to
give bounds on the minimum range dimension is an old and difficult problem.
Another unsolved problem (due to R.T. Smith in 1972) is to classify eigenmaps and
spherical minimal immersions whose components are L2-orthonormal.

Some arithmetic properties of the sequence {σl}l≥1 imply:

Corollary. Let dλ = d(Lλ) be the maximum dimension such that Lλ has a dλ-
dimensional simplex as a linear slice (across the origin 0). Then

d(Lλ) ≤ max
∂Lλ

Λ(., 0).

Analogous statement holds for Mλ (with Lλ replaced by Mλ). Equality holds if and
only if the sequence {σl}l≥1 is arithmetic from the dλ-th term onward.

Example. In the lowest non-trivial case of quadratic eigenmaps of the three-sphere,
the Hopf map Hopf : S3 → S2 corresponds to both maximal distortion 2 and minimal
range dimension. Hence, we obtain

σ(L2
3, 0) =

dimL2
3 + 1

1 + Λ(〈Hopf 〉, 0)
= 3

2

3
.

The explicit description of L2
3 shows that L2

3 (in fact, (L2
3)SU(2)) has a triangular slice

across 0. Thus, equality holds above, and we obtain

σl(L2
3, 0) =

l + 1

3
, l ≥ 2.

Example. In the lowest non-trivial case of moduliM4
3 for quartic spherical minimal

immersions of the three sphere, a role similar to the Hopf map is played by the (mini-
mum range-dimensional) quartic minimal immersion I : S3 → S9 The corresponding
point 〈I〉 on the moduli has distortion 3/2 and this gives the upper bound

σ(M4
3, 0) ≤ dimM4

3 + 1

1 + Λ(〈I〉, 0)
= 7

3

5
.
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Remark. For some SU(2)-equivariant moduli, low dimensional simplicial slices
can be constructed explicitly. For example, (M6

3)SU(2) has a triangular slice, and
(M8

3)SU(2) and (M12
3 )SU(2) both have tetrahedral slices (across 0). These are con-

structed using the tetrahedral, octahedral and icosahedral spherical minimal immer-
sions.

The minimal orbit method for SU(2) (or equivariant construction originally introduced
by Mashimo) has been used by DeTurck and Ziller to obtain a large number of low
range-dimensional SU(2)-equivariant eigenmaps and spherical minimal immersions of
the three sphere. They constructed these with specific invariance properties to prove
that every homogeneous spherical space form (of S3 and also of higher dimensional
odd dimensional spheres) admits a minimal isometric imbedding into a Euclidean
sphere (of sufficiently high dimension). For our purposes here these immersions, in
turn, enable us to calculate the measures of symmetry for the equivariant moduli
(Lk3)SU(2), k ≥ 2, and (Mk

3)SU(2) k ≥ 4.

Theorem 2. For k ≥ 2, we have

max
∂(Lk3)SU(2)

Λ(., 0) =

{
k if k is even
k−1

2
if k is odd.

The dimension dk = d((Lk3)SU(2)) of the largest simplicial slice of (Lk3)SU(2) (across 0)
is equal to this maximal distortion, and we have

σl((Lk3)SU(2), 0) =

{
1 if l ≤ dk
l+1

1+dk
if l > dk.

In particular, we have

σ((Lk3)SU(2), 0) =

{
k+2

2
if k is even

k if k is odd.

For k ≥ 5 these hold with Lk3 replaced by Mk
3, and we have

σ((Mk
3)SU(2), 0) =

{
k+2

2
− 5

k+1
if k is even

k − 10
k+1

if k is odd.

Since dim(Lk3)SU(2) = O(k2) and dim(Mk
3)SU(2) = O(k2) as k → ∞, these indicate

that Lk3 and Mk
3 are far from symmetric. Note also the interesting byproduct

σ((Lk3)SU(2), 0) > σ((Mk
3)SU(2), 0), k ≥ 5
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which is to be expected as (Mk
3)SU(2) is a linear slice of (Lk3)SU(2).

Remark. For k = 4, the lowest range-dimensional SU(2)-equivariant quartic mini-
mal immersion I : S3 → S9 gives

σ((M4
3)SU(2), 0) ≤ 4.

Ironically, this is only an upper estimate because the SU(2)-module structure on the
(linear) range of I is reducible, in fact, the double of an irreducible SU(2)-module.
In addition, on the boundary of the moduli (M4

3)SU(2) there is a 6-dimensional set
(corresponding to the so-called type II0 spherical minimal immersions.) Their ranges
are also reducible, the triple of an irreducible SU(2)-module. The corresponding
parameter points are all extremal (in the sense of convex geometry) and their algebraic
description is cumbersome.

Remark. Forgetting SU(2)-equivariance, the range dimensions of these SU(2)-
equivariant eigenmaps and spherical minimal immersions can also be used for Vmin in
the upper estimate of the measures of symmetry σ(Lk3, 0) and σ(Mk

3, 0). Only upper
estimates can be expected since a least range-dimensional SU(2)-equivariant mini-
mal immersion among SU(2)-equivariant minimal immersions usually do not have
minimal range dimension among all spherical minimal immersions. This has been
pointed out by Escher and Weingart who, among others, found a spherical minimal
immersion f : S3 → SV with k = 36 but dimV ≤ 36. (For k = 36, the minimum
range dimension for SU(2)-equivariant minimal immersions is 37.)
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[11] B. Grünbaum, Convex polytopes, Springer, 2003.
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