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Abstract. We give an elementary introduction to CR and pseu-
dohermitian geometry, starting from H. Lewy’s legacy (cf. [20])
i.e. tangential Cauchy-Riemann equations on the boundary of the
Siegel domain. In this context we describe fundamental objects,
such as contact structures, Levi forms, the Tanaka-Webster con-
nection and the Fefferman metric (cf. e.g. [4]). Also naturally
arising Hörmander systems of vector fields, the associated sub-
laplacians, and J. Jost and C-J. Xu’s subelliptic harmonic maps
(cf. [16]), a first geometric interpretation of which is given in terms
of Lorentzian geometry (cf. [2]). A second, more specialized talk -
scheduled for the afternoon of the same day - is devoted to the dis-
cussion of boundary values of Bergman-harmonic maps. There we
start from A. Korányi & H.M. Reimann’s crucial observation (cf.
[17]) that, as a consequence of Fefferman’s asymptotic expansion
formula (cf. [9]) for the Bergman kernel of a smoothly bounded
strictly pseudoconvex domain Ω ⊂ Cn

K(ζ, z) = CΩ|∇ϕ(z)|2 · detLϕ(z) ·Ψ(ζ, z)−(n+1) + E(ζ, z),

|E(ζ, z)| ≤ C ′Ω |Ψ(ζ, z)|−(n+1)+1/2 · |log |Ψ(ζ, z)|| ,
the Kählerian geometry of the interior of Ω may be effectively
related to the contact geometry of its boundary ∂Ω. Then we
make use of the Graham-Lee connection (cf.[13]) to derive the com-
patibility equations on ∂Ω satisfied by the boundary values of a
Bergman-harmonic map Φ : Ω→ S which is C∞ up the boundary.
We are led to a geometric interpretation (cf. [5]) of Jost & Xu’s
subelliptic harmonic maps from an open set U ⊂ R2n−1 carrying
a given Hörmander system of vector fields.
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1. Tangential Cauchy-Riemann equations: Hans Lewy’s
legacy

Let us start with the Siegel domain

Ωn = {(z, w) ∈ Cn × C : Im(w) > |z|2}
and consider the Dirichlet problem for the ordinary Cauchy-Riemann
system

(1) ∂F = 0 in Ωn,

(2) F = f on ∂Ωn,

for some f ∈ C∞(∂Ωn,C). Let us look at the C∞ regularity up to
the boundary of the solution to (1)-(2) i.e. assume that a solution
F ∈ C∞(Ωn,C) exists. If

ρ(z, w) =
1

2i
(w − w)−

n∑
j=1

zjzj

and ε > 0 then Mε = {(z, w) ∈ Cn+1 : ρ(z, w) = ε} is a smooth real
hypersurface lying in the interior of Ωn. A complex tangent vector field

Z =
n∑
j=1

λj
∂

∂zj
+ µ

∂

∂w

is tangent to Mε if and only if Z(ρ) = 0 i.e. µ = 2i
∑

j λjzj. Complex

vector fields, of type (1, 0), which are tangent to Mε are therefore of
the form Z =

∑
j λjLj where

Lj ≡
∂

∂zj
+ 2izj

∂

∂w
.

As F is holomorphic in Ωn

∂F

∂zj
= 0,

∂F

∂w
= 0,

one has Lj(F ) = 0 and therefore along Mε. Let us tend with ε → 0,
which is the same to approach the boundary as (z, w) → ∂Ωn. It
follows that the boundary values f of F must satisfy the equations

(3) Ljf = 0.

In the language of PDEs, C∞ regularity up to the boundary in the
Dirichlet problem (1)-(2) doesn’t come for free, the boundary data must
satisfy certain compatibility equations along ∂Ωn i.e. equations (3).
These are the tangential Cauchy-Riemann equations (on the bound-
ary of the Siegel domain) and Lj are the Lewy operators. Indeed the
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operator L1 has been discovered by H. Lewy in his fundamental pa-
per of 1958 (while investigating the boundary behavior of holomorphic
functions on the Siegel domain in C2, cf. [20]).

The span of {Lj(p) : 1 ≤ j ≤ n} at each p ∈ ∂Ωn gives a com-
plex rank n subbundle T1,0(∂Ωn) of the complexified tangent bundle
T (∂Ωn)⊗ C, the CR structure of ∂Ωn satisfying

(4) T1,0(M)p ∩ T0,1(M)p = (0), p ∈M ≡ ∂Ωn ,

(5) Z,W ∈ C∞(U, T1,0(M)) =⇒ [Z,W ] ∈ C∞(U, T1,0(M)),

where T0,1(∂Ωn) = T1,0(∂Ωn) and U ⊂ ∂Ωn is an open set. According
to the calculations above, the CR structure T1,0(∂Ωn) is induced by the
complex structure of the ambient space Cn+1 in the sense that

T1,0(∂Ωn)p = [Tp(∂Ωn)⊗R C] ∩ T 1,0
(
Cn+1

)
p
, p ∈ ∂Ωn,

where T 1,0(Cn+1) is the holomorphic tangent bundle over Cn+1. Clearly
these considerations admit a verbatim repetition to make sense of a
notion of induced CR structure on the boundary of any domain Ω ⊂
Cn+1 (whose boundary is smooth), and actually on any smooth real
hypersurface M ⊂ Cn+1.

Let M ⊂ Cn+1 be a real hypersurface, endowed with the induced
CR structure T1,0(M), and let us consider the first order differential
operator

∂b : C∞(M,C)→ C∞ (T0,1(M)∗) ,

(∂bf)L = L(f), f ∈ C∞(M,C), L ∈ T1,0(M).

This is the tangential Cauchy-Riemann operator and ∂bf = 0 are the
tangential Cauchy-Rimann equations on M (clearly equivalent to (3)
when M is the boundary of the Siegel domain). A solution to ∂bf = 0
is a Cauchy-Riemann function. We shall not worry at this time for the
regularity to be requested a priori, or to be expected a posteriori, for
such a CR function. Note that for any holomorphic function F ∈ O(U),
defined on an open set U ⊂ Cn+1 such that U ∩ M 6= ∅, the trace
f = F |U∩M is a CR function on U ∩M . We assume tacitly that M
is embedded, so that U ∩M be open in M . The converse is one of
the main problems in CR geometry (the CR extension problem) and
clearly admits a local, as well as a global, formulation.

Let (M,T1,0(M)) be an abstract CR manifold i.e. a real (2n + 1)-
dimensional C∞ manifold endowed with the a complex rank n sub-
bundle T1,0(M) ⊂ T (M)⊗C obeying to (4)-(5). Another fundamental
problem in CR geometry (the embedding problem) is whether an embed-
ding of M in Cn+1 exists such that T1,0(M) be the CR structure induced
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by the complex structure of Cn+1. The embedding problem clearly ad-
mits a local version as well and is still related to the tangential Cauchy-
Riemann equations, for given an embedding f = (f 1, · · · , fn+1) : M →
Cn+1 such that

(dpf)T1,0(M)p = [Tp(M)⊗R] ∩ T
(
Cn+1

)
f(p)

, p ∈M,

it may be easily seen that each f j is a CR function on M . Hence, to
solve the embedding problem one needs to produce enough functionally
independent solutions to ∂bf = 0.

Let us go back to the boundary of the Siegel domain Ω1 ⊂ C2.
Precisely, let H = C×R be the Heisenberg group i.e. the 3-dimensional
Lie group with the law

(z, t) · (w, s) = (z + w, t+ s+ 2 Im(z w)), (z, t), (w, s) ∈ H.

The map

f : H→ ∂Ω1, f(z, t) = (z, t+ i |z|2), (z, t) ∈ H,

is a C∞ diffeomorphism of H onto the boundary of the Siegel domain
and f−1 maps the Lewy operator L1 into L where

L =
∂

∂z
+ i z

∂

∂t
.

The span of L over C is a CR structure T1,0(H) and then f is a CR
isomorphism i.e. a diffeomorphism such that

(dpf)T1,0(H) = T1,0(∂Ω1)f(p) , p ∈ H.

Lewy’s operator L possesses well known unsolvability properties i.e.
there is a smooth f such that Lu = f has no smooth solution in
any neighborhood of the origin, eliminating a belief (popular at the
beginning of the 1950s) that linear first order equations with smooth
coefficients should always have solutions (of course nonlinear examples
trivially exist e.g. eu

′
= 0 has no solutions). Solvability turns to be

closely related to (local) embeddability as shown by Hill’s example
(cf. [14]). The equation Lu = ω (with ω ∈ C∞(H,C) is solvable at
(z0, t0) ∈ R3 if there is an open set U ⊂ R3 and a function u ∈ C∞(U,C)
such that Lu = ω in U . Let T1,0(H× C) be the CR structure spanned
by

P =
∂

∂ζ
, Q = L+ ω(z, t)

∂

∂ζ
,

where ζ : H×C→ C is the projection. The result of C.D. Hill alluded
to above is that T1,0(H× C) is locally embeddable at (z0, t0, ζ0) if and
only if Lu = ω is solvable at (z0, t0).
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Let Ψ : M → Cn be a C1-embedding of a real m-dimensional mani-
fold M . A point x ∈M is a complex tangent of Ψ(M) if

[(dxΨ)Tx(M)] ∩
[
JΨ(x)(dxΨ)Tx(M)

]
6= (0)

where J is the complex structure on Cn. Let ℵΨ(M) be the set of all
complex tangents of Ψ(M). For each x ∈ ℵΨ(M) let H(M)x be the
maximal complex subspace of Tx(M) i.e.

(dxΨ)H(M)x = [(dxΨ)Tx(M)] ∩
[
JΨ(x)(dxΨ)Tx(M)

]
.

The dimension dimCH(M)x is the degree of x. When Ψ(M) is a real
hypersurface in Cn one has ℵΨ(M) = M and each complex tangent
x ∈ M has degree n − 1. In general ℵΨ(M) has a rather complicated
topological structure (e.g. it is singular, stratified, etc.).

An embedding Ψ : M → Cn is totally real if ℵΨ(M) = ∅ and if
this is the case it must be that m ≤ n, and the case m = n is of
particular interest. Not all real n-dimensional manifolds admit totally
real embeddings in Cn. For instance, by a result of M. Gromov the
only spheres Sn admitting a totally real embedding Sn → Cn are S1

and S3. Ahern and Rudin exhibited an explicit totally real embedding
S3 → C3 (cf. [1]).

A knot is a continuous simple embedding of S1. Two knots Ki ⊂ S3

(i = 1, 2) are topologically equivalent, or have the same topological type,
if there is a homeomorphism h : S3 → S3 such that h(K1) = K2. A
beautiful result by A.L. Elgindi (cf. [8]) is that for every knot K ⊂ S3

and every positive integer n ∈ N there is an embedding Ψ : S3 → C3 of
class Cn such that ℵΨ(S3) is a knot topologically equivalent to K. That
is every topological type of a knot in S3 arises as the set of all complex
tangents to some embedding of S3 into C3. Remarkably the proof of
Elgindi’s result relies on the following facts

i) If M = ρ−1(0) ⊂ C2 is a real hypersurface and Ψ : M → C3

the embedding of M in C3 as the graph of a given smooth function
f : M → C

Ψ(z, w) = (z, w, f(z, w)), (z, w) ∈M,

then

ℵΨ(M) =
(
Lf
)−1

(0).

ii) The map L : C [z, w, z, w]→ C [z, w, z, w] is (linear and) surjective.
A moral conclusion is that a deep circle of ideas relates the notions

above and that a research project titled say Complex tangents, knots
and analytic discs, solvability and embeddability, through the geometry
of canonical bundles would be as actual today as well as at the time of
H. Jacobowitz’s results on this matter (cf. [15]).
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2. Hörmander systems and the Jost-Xu program

Let

L =
1

2
(X − iY ) ,

X =
∂

∂x
+ 2y

∂

∂t
, Y =

∂

∂y
− 2x

∂

∂t
,

be the real and imaginary parts of L. The vector fields {X, Y, ∂/∂t}
are left invariant and form a basis of the Lie algebra of H. Note that

[X, Y ] = −4
∂

∂t

(Heisenberg’s commutation relation) hence the vector fields {X, Y } and
their commutator span the tangent space to H = R3 at each point.
Hence {X, Y } is a special instance of what one commonly calls a
Hörmander system on R3. Let {X∗ , Y ∗} be the formal adjoints of
{X, Y } e.g. ∫

H
X∗f ϕ dµ =

∫
H
f Xϕ dµ

for all f, ϕ ∈ C1
0(H) (actually X∗ = −X and Y ∗ = −Y yet irrelevant).

Next let us consider the second order differential operator

∆bu = X∗Xu+ Y ∗Y u

(commonly referred to as a Hörmander sum of squares). Let Ω ⊂ H be
a bounded domain with smooth boundary. The space DO2(Ω) of all
second order differential operators

A =
∑
|α|≤2

Aα(x)Dα

with real valued continuous coefficients on Ω, is a Banach space with
the norm

‖A‖ =
∑
|α|≤2

sup
x∈Ω

|Aα(x)| .

If EO2(Ω) is the subset consisting of all second order differential oper-
ators which are elliptic in Ω then ∆b ∈ ∂ EO2(Ω) i.e. ∆b is a boundary
point of EO2(Ω) and ∆b is a degenerate elliptic operator in this sense.
More explicitly, a calculation of the symbol of ∆b shows that ellipticity
degenerates precisely in the cotangent directions θ0,p, p ∈ H, where

(6) θ0 = dt+ i
n∑
j=1

{
zj dzj − zj dzj

}
.
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However ∆b is subelliptic of order ε = 1/2 i.e. for every point p ∈ H
there is an open neighborhood U ⊂ H of p such that

‖u‖2
1/2 ≤ C

(
|(∆bu , u)L2|+ ‖u‖2

L2

)
, u ∈ C∞0 (U),

where ‖ · ‖ε is the Sobolev norm of order ε

‖u‖ε =

(∫
R3

(
1 + |ξ|2

)ε |û(ξ)|2 dξ
) 1

2

(û is the Fourier transform of u). Then, by a result of J.J. Kohn, ∆b

is hypoelliptic i.e. if ∆bu = f in distributional sense and f ∈ C∞ then
u ∈ C∞ as well. Hypoellipticity is the main property that ∆b shares
with elliptic operators.

Let N be a Riemannian manifold, carrying the Riemannian metric
h, which may be covered by a single coordinate neighborhood χ =
(y1, · · · , ym) : N → Rm, and let us consider the energy functional

EΩ : C∞(H, N)→ R,

EΩ(φ) =
1

2

∫
Ω

2∑
a=1

Xa(φ
j)Xa(φ

k) (hjk ◦ φ) dµ ,

where X1 = X and X1 = Y and µ is the Lebesgue measure on R3.
Also

φj = yj ◦ φ, hjk = h(∂/∂yj , ∂/∂yk), 1 ≤ j, k ≤ m.

The Euler-Lagrange equations of the variational principle δ EΩ(φ) = 0
are

(7) (HNφ)i ≡ −∆bφ
i +

2∑
a=1

Xa(φ
j)Xa(φ

k)
(
Γijk ◦ φ

)
= 0

and a solution φ ∈ C∞(H, N) to (7) is a subelliptic harmonic map. The
notion is due to J. Jost & C-J. Xu, who started a program of recovering
results known for quasilinear elliptic systems of variational origin, such
as the harmonic map system, to the at least hypoelliptic case. Clearly
(7) can be made sense of for an arbitrary Hörmader system of vector
fields, on an open subset U ⊂ RN , and if these vector fields are the
coordinate vector fields {∂/∂xA : 1 ≤ A ≤ N} a subelliptic harmonic
map is nothing but a harmonic map φ : U → N . Also a notion of
subelliptic harmonic morphism is ready available for one may consider
continuous maps φ : H → N pulling back local harmonics on N into
local harmonics of ∆b i.e.

∀ v : V ⊂ N → R, ∆hv = 0 in V =⇒ ∆b(v ◦ φ) = 0 in φ−1(V ).
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Here ∆h is the ordinary Laplace-Beltrami operator of (N, h) on func-
tions. Just as in the classical case of harmonic morphisms among Rie-
mannian manifolds φ : H → N must be smooth. Indeed one may
choose, about each point of N , a harmonic local coordinate system
(V, yj) and then φj = yj ◦ φ must be harmonics of ∆b i.e. ∆bφ

i = 0.
Yet ∆b is hypoelliptic hence each φi, and then φ, is C∞.

So Jost & Xu’s subeliptic harmonic maps are no doubt a generaliza-
tion of harmonic maps, and just as S. Campanato, M. Giaquinta, S.
Hildebrand, H. Kaul, and K. Widman at their time, Jost & Xu may
solve the Dirichlet problem for maps with values in regular balls, ex-
hibiting a wonderful use of the so called subelliptic technicalities born
with the work by E. Lanconelli and considerably developed into an
autonomous and respectable chapter of PDEs theory by a number of
people, among which the most important is perhaps N. Garofalo. Jost
& Xu’s result (cf. [16]) may be loosely stated as follows.

Theorem 1. Let Ω ⊂ H be a bounded domain with smooth boundary.
Let (N, h) be a complete Riemannian manifold, covered by a single co-
ordinate neighborhood. Let us assume the sectional curvature of (N, h)
is bounded by above by a constant κ2 and let p ∈ N be a point and
0 < µ < min{π/(2κ) , i(p)} where i(p) is the injectivity radius of p.
Let f ∈ C

(
Ω, N

)
∩W 1,2

X,Y (Ω, N) such that

f
(
Ω
)
⊂ B(p, µ) = {q ∈ N : dh(p, q) < µ}.

Then there is a unique map φ ∈ W 1,2
X,Y (Ω, N) ∩ L∞(Ω, N) such that

φ|∂Ω = f and φ(Ω) ⊂ B(p, µ) and φ minimizes EΩ among such maps.
Also this φ is a weak solution to HNφ = 0. Moreover φ has the same
interior regularity properties as solutions to linear hypoelliptic systems
and if ∂Ω is C∞ and noncharacteristic for {X, Y } and if f is C∞ one
gets the corresponding boundary regularity of φ.

Here W 1,2
X,Y (Ω, N) are Sobolev-type spaces of maps whose compo-

nents admit weak L2 derivatives in the directions X and Y . The
boundary ∂Ω is noncharacteristic for the system {X, Y } if for every
point p ∈ ∂Ω either Xp 6∈ Tp(∂Ω) or Yp 6∈ Tp(∂Ω). It may be easily
shown (e.g. by looking at generalized solutions to ∆bu = f i.e. so-
lutions u ∈ C1 whose second order derivatives have jumps across ∂Ω)
that the (non) characteristic notion just introduced is the ordinary no-
tion in the theory of characteristics and of the Cauchy problem for
∆bu = f .
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Our point of view in this talk is that Jost & Xu’s notion (of a subel-
liptic harmonic map) is rather formal1 (in the end just replacing by
∆b the ordinary Laplacian in the harmonic map system) and wish to
exhibit a geometric interpretation.

The differential 1-form θ0 given by (6) above is a contact form on
H i.e. θ0 ∧ dθ0 is a volume form on H. It is but one of the infinitely
many nowhere zero sections of the conormal bundle H(H)⊥ ⊂ T ∗(H)
where H(H) is the Levi distribution of H as a CR manifold, with the
CR structure T1,0(H). Precisely

H(H) = Re {T1,0(H) ∩ T0,1(H)} ,
H(H)⊥p = {ω ∈ T ∗p (H) : Ker(ω) ⊃ H(H)p}, p ∈ H.

Then H(H)⊥ → H is a real line bundle (as H is oriented and connected
this bundle is actually trivial i.e. H(H)⊥ ≈ H × R) and any other
nowhere zero section θ ∈ C∞(H(H)⊥) (any pseudohermitian struc-
ture on H, according to the terminology introduced by S. Webster)
is ”conformally” related to θ0 i.e. θ = λ θ0 for some C∞ function
λ : H→ R \ {0}. In particular any pseudohermitian structure on H is
a contact form. The Levi distribution carries the complex structure

J : H(H)→ H(H),

J(Z + Z) = i(Z − Z), Z ∈ T1,0(H).

Given any contact form θ ∈ C∞(H(H)⊥) the Levi form is

Gθ(X, Y ) = (dθ)(X, JY ), X, Y ∈ H(H).

As an immediate consequence of definitions

Gθ = λGθ0

accounting for the (largely exploited) analogy among CR and conformal
geometry. An easy verification shows that Gθ0 is positive definite hence
(H, T1,0(H)) is strictly pseudoconvex, a notion which is immediately

1Although the functional EΩ : C∞(H, N)→ R above isn’t postulated but rather
discovered by setting

Xj =

3∑
A=1

bAj (x)
∂

∂xA
, aAB(x) =

2∑
j=1

bAj (x)bBj (x),

(gε)
AB

= aAB + ε δAB , [(gε)AB ] =
[
(gε)

AB
]−1

, ε > 0,

EΩ,ε(φ) =
1

2

∫
Ω

‖dφ‖2gε dx =
1

2

∫
Ω

(gε)
AB ∂φα

∂xA
∂φβ

∂xB
(hαβ ◦ φ) dx

(the ordinary Dirichlet functional on smooth maps among the Riemannian man-
ifolds (M, gε) with gε(∂A , ∂B) = (gε)AB and (N,h)) and letting ε → 0 yields
EΩ,ε(φ)→ EΩ(φ).
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made sense of on an abstract CR manifold. If θ is chosen such that Gθ

be positive definite (i.e. λ > 0) then one may consider the Riemannian
metric gθ (the Webster metric) given by

gθ(X, Y ) = Gθ(X, Y ), gθ(X,T ) = 0, gθ(T, T ) = 1,

for any X, Y ∈ H(H). Here T ∈ X(H) is the Reeb vector of (H, θ) i.e.
the tangent vector field on H determined by

θ(T ) = 1, T c dθ = 0.

Then (H(H), Gθ) is a sub-Riemannian structure on H and the Webster
metric gθ contracts the sub-Riemannian structure i.e.

dgθ(p, q) ≤ dH(p, q), p, q ∈ H,

where dgθ and dH are respectively the distance function associated to
the Riemannian structure gθ and the Carnot-Carthéodory distance
function. A rich geometric structure arises from the CR structure
T1,0(H) alone. To this we shall add in a moment geometric objects
such as the Tanaka-Webster connection, and the Fefferman metric. It
is an accepted philosophy that the study of these geometric objects
may ultimately shed light on the properties of the solutions to the tan-
gential Cauchy-Riemann equations. We shall use these objects, and
others to come, such as the Graham-Lee connection, in order to give
the geometric interpretation of subelliptic harmonic maps alluded to
above.

It should be mentioned that, in a couple of papers published at
the end of the 1970’s in Trans. A.M.S and Proc. A.M.S. (cf. [3])
A Bejancu also introduced a notion of CR submanifold M of a given
Kählerian manifold M̃ , as a real submanifold carrying a distribution
D such that i) J̃D ⊂ D and ii) the orthogonal complement D⊥ of D in
(T (M̃), g̃) satisfies J̃D⊥ ⊂ T (M)⊥. Here J̃ and g̃ are respectively the
complex structure and the Kählerian metric on M̃ . The notion was
soon embraced by the portion of mathematical community devoted
to the study of the geometry of second fundamental form of isometric
immersions among Riemannian manifolds, a large amount of papers on
CR submanifolds of Kählerian manifolds first and then of Hermitian
manifolds of sorts (such as locally conformal Kähler manifolds) have
been published, and eventually A. Bejancu got the Romanian Academy
price for his discovery. An observation by D.E. Blair and B-Y. Chen
shows that, as a consequence of the Kähler condition on g̃

{X − iJ̃X ∈ T (M)⊗ C : X ∈ D}
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is a CR structure on M , though of higher CR codimension (actually
a locally conformal Kähler metric g̃ suffices). So it seems a circle has
been closed, and A. Bejancu’s notion does fit into CR geometry, in spite
of some criticism formulated at the time of its discovery (both because
Blair and Chen’s observation appeared somewhat later, and because A.
Bejancu’s CR submanifolds were already embedded, while it appears he
was unaware of when CR manifolds embed e.g. unaware of Andreotti
and Hill’s embedability theorem). It should be however observed that
the study of the geometry of the second fundamental form of a CR
submanifold of a Hermitian manifold, based as it is on the use of the
first fundamental form and of Gauss-Weingarten and Gauss-Codazzi-
Ricci equations, is confined to Riemannian geometry: if for instance
M̃ = Cn and M is the boundary of the Siegel domain then none of
the infinitely many Webster metrics of M coincides with the first fun-
damental form (the metric induced on M by the flat Kähler metric of
the ambient space Cn). In turn the Webster metrics {gθ : θ ∈ P} of a
(at least nondegenerate) CR manifold and their curvature describe the
pseudoconvexity properties of M , as understood in complex analysis
in several complex variables.

3. Fefferman’s metric

Let (M,T1,0(M)) be a CR manifold, of real dimension 2n+1 and CR
dimension n. Let H(M) be its Levi distribution. Assume that M is
strictly pseudoconvex i.e. the Levi form Gθ is positive definite for some
pseudohermitian structure θ on M . Let T ∈ X(M) be the Reeb vector
of (M, θ) and gθ the Webster metric. By a result got independently by
S. Webster and N. Tanaka, there is a unique linear connection ∇ on M
such that i) H(M) is parallel with respect to ∇, ii) ∇J = 0, ∇gθ = 0,
and iii) the torsion tensor field T∇ of ∇ is pure i.e.

T∇(Z,W ) = 0, T∇(Z,W ) = 2iGθ(Z,W ), Z,W ∈ T1,0(M),

τ ◦ J + J ◦ τ = 0, τ(X) ≡ T∇(T,X), X ∈ X(M).

∇ is the Tanaka-Webster connection of (M, θ) (cf. [21], [22]). The
assumption of nondegeneracy of some Levi form Gθ (and thus of all)
actually suffices to prove existence and uniqueness of such ∇ (we shall
only exploit the result in the strictly pseudoconvex cases).

A complex valued differential p-form ω on M is a (p, 0)-form if
T0,1(M) cω = 0. Let Λp,0(M) → M be the relevant bundle. Then
K(M) = Λn+1,0(M) is a complex line bundle over M (the canonical
line bundle). Let us set

C(M) = [K(M) \ {zero section}] /R+ , R+ = GL+(1,R),
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so that to obtain a principal S1-bundle

S1 → C(M)
π−→M

(the canonical circle bundle). Let Fθ ∈ Lor(C(M)) be the Lorentzian
metric (the Fefferman metric of (M, θ)) given by

Fθ = π∗G̃θ + 2 (π∗θ)� σ,

σ =
1

n+ 2

{
dγ + π∗

[
i ωα

α − i gαβ dgαβ +
ρ

4(n+ 1)
θ

]}
,

G̃θ(X, Y ) = Gθ(X, Y ), G̃θ(T, · ) = 0, X, Y ∈ H(M),

∇Tβ = ωβ
αTα , ρ = gαβRαβ ,

gαβ = Gθ(Tα, Tβ),
[
gαβ
]

=
[
gαβ
]−1

,

Rαβ = Ric∇(Tα, Tβ), Ric∇(X, Y ) = trace
{
Z 7−→ R∇(Z, Y )X

}
,

for any local frame {Tα : 1 ≤ α ≤ n} ⊂ C∞(U, T1,0(M)). Also γ is a
local fibre coordinate on C(M). By a result of C.R. Graham, σ is a

connection 1-form in the principal bundle S1 → C(M)
π→ M . By a

result of J.M. Lee

θ̂ = euθ =⇒ Fθ̂ = eu◦πFθ

and then {eu◦πFθ : u ∈ C∞(M)} (the restricted conformal class of Fθ)
is a CR invariant. None of the Fefferman metrics Fθ is Einstein, yet
(C(M), Fθ) is a space-time with the time orientation T ↑−S (here S is
the tangent to the action of S1 on C(M) and T ↑ is the horizontal lift
of T with respect to the connection 1-form σ).

Let us assume for simplicity that M is compact (hence C(M) is
compact) and consider the energy functional

E(Φ) =
1

2

∫
C(M)

traceFθ (Φ∗h) dvol(Fθ),

Φ ∈ C∞(C(M), N),

where (N, h) is a Riemannian manifold. If Fθ were a Riemannian met-
ric, the trace traceFθ (Φ∗h) would be the (squared) Hilbert-Schmidt
norm ‖dΦ‖2. While harmonic maps theory arises in the Riemann-
ian category, it is long consolidated within the semi-Riemannian cat-
egory, as well (starting with the work by B. Fuglede). A C∞ map
Φ : C(M)→ N is harmonic if

d

dt
{E(Φt)}t=0 = 0
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for any smooth 1-parameter variation {Φt}|t|<ε ⊂ C∞(C(M), N) of Φ
i.e. Φ0 = Φ. The Euler-Lagrange equations of δ E(Φ) = 0 are

(8) −�Φi +
(
Γijk ◦ Φ

) ∂Φj

∂uA
∂Φk

∂uB
(Fθ)

AB = 0

where � is the Laplace-Beltrami operator of (C(M), Fθ) (the wave
operator) and u0 = γ, uA = xA◦π, 1 ≤ A ≤ 2n+1, are local coordinates
on C(M) (induced by the local coordinate system (U, x1, · · · , x2n+1)
on M). If Φ : C(M) → N is S1-invariant and φ : M → N is the
corresponding base map (so that Φ = φ ◦ π) then one may integrate
over the fibres in E(φ ◦ π) so that to get2

E(φ ◦ π) = π

∫
M

traceGθ {ΠH (φ∗h)} θ ∧ (dθ)n ≡ 2π E(φ)

where ΠH (φ∗h) is the restriction of φ∗h to H(M) ⊗ H(M). One has
then discovered the energy integral which is appropriate for subelliptic
theory, for φ ∈ C∞(M,N) is a critical point of E if and only if φ ◦ π is
a harmonic map of (C(M), Fθ) into (N, h) (by a result of E. Barletta
et al.) and the Euler-Lagrange equations of δ E(φ) = 0 are

(9) −∆bφ
i +

2n∑
a=1

Xa(φ
j)Xa(φ

k)
(
Γijk ◦ φ

)
= 0

where {Xa : 1 ≤ a ≤ 2n} ⊂ C∞(U,H(M)) is a local Gθ-orthonormal
frame. Equations (9) are actually the projection on M via π of the
harmonic map system (8) since (by a result of J.M. Lee) π∗� = ∆b.
Here ∆b (the sublaplacian of (M, θ)) is the second order differential
operator given by

∆bu = −div
(
∇Hu

)
, u ∈ C2(M),

LX (θ ∧ (dθ)n) = div(X) θ ∧ (dθ)n,

∇Hu = ΠH∇u , ΠH : T (M) = H(M)⊕ RT → H(M),

gθ(∇u , X) = X(u), X ∈ X(M).

On the other hand, if U is also the domain of a local chart (U,ϕ) on M ,
then it may be easily seen that {ϕ∗Xa : 1 ≤ a ≤ 2n} is a Hörmander
system on ϕ(U) ⊂ R2n+1 and ∆b ≡

∑2n
a=1 X

∗
aXa, hence solutions to (9)

are subelliptic harmonic maps (giving a first geometric interpretation
to those).

It should be mentioned that Fefferman’s metric was originally built
in the following extrinsic manner. Let Ω ⊂ Cn be a smoothly bounded

2The second π is the irrational number π ∈ R \ Z (so does the third).
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strictly pseudoconvex domain and let us consider the Dirichlet problem
for the complex Monge-Ampére equation

(10) J(u) ≡ (−1)n det

(
u ∂u/∂zk

∂u/∂zj ∂2u/∂zj ∂zk

)
= 1 in Ω,

(11) u = 0 on ∂Ω.

By a result of S-Y. Cheng & S-T. Yau the problem (10)-(11) admits
a unique solution u which is C∞ in the interior of Ω and belongs to
Cn+(3/2)−ε(Ω). Let us consider the function

H : Ω× (C \ {0})→ R,

H(z, ζ) = |ζ|2/(n+1) u(z), z ∈ Ω, ζ ∈ C \ {0},
where u is the unique solution to (10)-(11). Moreover we consider the
(0, 2)-tensor field G on Ω× (C \ {0}) given by

G =
n∑

A,B=0

∂2H

∂zA ∂zB
dzA � dzB

where z0 = ζ. Then G is a biholomorphic invariant of Ω, in the fol-
lowing sense. Let F : Ω → Ω be a biholomorphic map and let us
set

F : Ω× (C \ {0})→ Ω× (C \ {0}) ,

F(z, ζ) =

(
F (z) ,

ζ

det F ′(z)

)
, z ∈ Ω, ζ ∈ C \ {0}.

Then (by a result of C. Fefferman) F is a biholomorphism of Ω ×
(C \ {0}) in itself and F∗G = G. One may also show that

det

(
∂2H

∂zA ∂zB

)
=

J(u)

(n+ 1)2

hence G is nondegenerate and actually a semi-Riemannian metric on
Ω× (C \ {0}). The explicit expression of G is

G =
u(z)

(n+ 1)2
|ζ|2/(n+1)−2 dζ � dζ+

+
|ζ|2/(n+1)

n+ 1
(∂u)� (

1

ζ
dζ) +

|ζ|2/(n+1)

n+ 1
(
1

ζ
dζ)� (∂u)+

+|ζ|2/(n+1) ∂2u

∂zj ∂zk
dzj � dzk .

Let Ω be given by the defining function ϕ i.e. Ω = {ϕ < 0} and
Dϕ(z) 6= 0 for every z ∈ ∂Ω. For each ε ≥ 0 let us set Mε = {z ∈ Ω :
ϕ(z) = −ε} (so that M0 = ∂Ω). Let Gε = j∗εG where jε : Mε × S1 →
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Ω × (C \ {0}) is the inclusion. It may be shown that Gε tends, as
ε → 0, to a Lorentzian metric g on ∂Ω × S1. When M = ∂Ω and
θ is a positively oriented contact form on M then C(M) is trivial i.e.
there is a principal bundle isomorphism Φ : C(M)→ M × S1 and the
Lorentzian metrics Fθ and g are conformally equivalent i.e. Φ∗g = efFθ
for some f ∈ C∞(C(M)).

Fefferman’s metric is both an object worth of further investigation
and, within the limits of our present knowledge of its properties, a
tool of first magnitude. By Fefferman’s own work, if M ⊂ Cn+1 is
a strictly pseudoconvex real hypersurface then Chern-Moser’s chains
are the projections on M via π : C(M) → M of the non-vertical null
geodesics of Fθ. This enabled L. Koch to give a new proof of the result
by H. Jacobowitz, that any two nearby points on M may be joined by
a chain. While Koch’s proof of Jacobowitz’s theorem isn’t necessarily
simpler, it has the advantage of showing that there is an alternative,
and very appealing, approach to CR and pseudohermitian geometry
through Lorenzian geometry.

A piece of folklore is that just any nice problem in CR geometry be-
gins with, or is related to, Fefferman’s metric. One illustrious instance
of that is CR Yamabe’s problem i.e. given a contact form θ ∈ P+ find
u ∈ C∞(M) such that (the Tanaka-Webster connection associated to
the contact form) euθ has constant pseudohermitian scalar curvature:
this turns out to be precisely the Yamabe problem for the Fefferman
metric Fθ. Relevant equation is certainly non-elliptic but its projection
on M turns out to be (nonlinear) subelliptic and then subelliptic tech-
nicalities (whose basics were developed for the occasion) may be used
to prove existence of the solution. Fundamental work in this direction
is due to D. Jerison and J.M. Lee, and to Gamara and Yacoub in small
dimension. The geometric interpretation of Jost and Xu’s subelliptic
harmonic maps belongs here (it relies on projecting on M the harmonic
maps system on C(M)).

By some of my older work, if M = S2n+1 then the first Pontryagin
form of Fθ vanishes (i.e. P1(Ω2) = 0) and the corresponding trans-
gression class is integral (i.e. [TP1(ω)] ∈ H3(L(C(M)),Z)). In general
Pontyagin forms of the Fefferman metric are CR invariants, and if some
Pontryagin form vanishes then the corresponding transgression class is
a CR invariant, as well. I understand there is a lot of progress in this
area but, to my knowledge the characteristic rings of C(M) and M
have not been effectively related. Fefferman’s metric (and correspond-
ing Levi-Civita connection, which by the way may be very effectively
related to the Tanaka-Webster connection) should be used to compute
the Weil homomorphism w : I(GL(2n+ 2,R))→ H∗(C(M),R).
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4. Bergman kernel and metric

Let Ω ⊂ Cn be a domain and L2(Ω) the Lebesgue space of all mea-
surable functions f : Ω→ C such that

‖f‖L2 =

(∫
Ω

|f(z)|2 dµ(z)

)1/2

<∞

where µ is the Lebesgue measure on R2n. Let

(f, g)L2 =

∫
Ω

f(z) g(z) dµ(z)

be the inner product on L2(Ω). Let H2(Ω) be the space of all functions
f ∈ L2(Ω) which are holomorphic in Ω. Let A ⊂ Ω be a compact
subset and let f ∈ H2(Ω) an L2 holomorphic function on Ω. Let ζ ∈ A
and

P (ζ, ρ) = {z ∈ Cn : |zj − ζj| < ρj , 1 ≤ j ≤ n}
a polidisc of poliradius ρ = (ρ1, · · · , ρn) such that P (ζ, ρ) ⊂ Ω and f
may be represented as a uniformly convergent power series

f(z) =
∞∑
|α|=0

aα(z − ζ)α , z ∈ P (ζ, ρ).

Then

‖f(z)‖2
L2 =

∫
Ω

|f(z)|2 dµ(z) ≥
∫
P (ζ,ρ)

f(z) f(z) dµ(z) =

=
∞∑
|α|=0

∞∑
|β|=0

aα aβ

∫
P (ζ,ρ)

(z − ζ)α(z − ζ)β dµ(z) =

(as terms of the form aα(z − ζ)α and aβ(z − ζ)β with α 6= β are
mutually orthogonal with respect to the L2 inner product (g, h)ρ =∫
P (ζ,ρ)

g(z)h(z) dµ(z))

=
∞∑
|α|=0

∫
P (ζ,ρ)

|aα|2
n∏
j=1

|zj − ζj|2αj dµ(z) ≥

≥
∣∣a(0,··· ,0)

∣∣2 ∫
P (ζ,ρ)

dµ(z) = |f(z)|2 µ (P (ζ, ρ))

that is
|f(z)| ≤ µ (P (ζ, ρ))−1/2 ‖f‖L2 .

A compactness argument now shows that

(12) |f(z)| ≤ CA‖f‖L2
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for some constant CA > 0 (depending only on the compact set A) and
any f ∈ H2(Ω), z ∈ A. The simple estimate (12) plays a crucial role.
First, it clearly means that for every z ∈ Ω the evaluation functional

δz : H2(Ω)→ C, δz(f) = f(z), f ∈ H2(Ω),

is continuous. As a second, and a bit less obvious, consequence of (12)
the subspace H2(Ω) is closed in L2(Ω) and hence a Hilbert space itself.
By the Riesz representation theorem for every z ∈ Ω there is an L2

holomorphic function kz ∈ H2(Ω) such that

δz(f) = (f , kz)L2 , f ∈ H2(Ω),

or

(13) f(z) =

∫
Ω

K(z, ζ) f(ζ) dµ(ζ)

for any f ∈ H2(Ω) and any z ∈ Ω, where we have set K(z, ζ) = kz(ζ)
for any z, ζ ∈ Ω. The function K : Ω× Ω → C is the Bergman kernel
of Ω (and identity (13) show that K reproduces the L2 holomorphic
functions).

If {φν}ν≥0 is a complete orthonormal system in H2(Ω) then

K(z, ζ) =
∞∑
ν=0

φν(z)φν(ζ)

with uniform convergence on compact subsets Ω × Ω. It follows that
K : Ω× Ω→ C is a C∞ map, holomorphic in z and anti-holomorphic
in ζ. Also if Ω is bounded than for each z0 ∈ Ω there is f ∈ H2(Ω)
such that f(z0) 6= 0 hence the identity

K(z, z) =
∞∑
ν=0

|φν(z)|2

implies that K(z, z) > 0 for every z ∈ Ω. Consequently we may con-
sider

g =
n∑

j,k=1

∂2 logK(z, z)

∂zj ∂zk
dzj � dzk

which turns out to be a Kählerian metric on Ω (the Bergman met-
ric) with respect to which biholomorphisms of Ω are isometries (i.e.
Hol(Ω) ⊂ Isom(Ω, g)). Also if Ω is homogeneous (i.e. Hol(Ω) is transi-
tive on Ω) then (Ω, g) is Kähler-Einstein.
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5. Fefferman’s asymptotic expansion formula for the
Bergman kernel and its consequences

If Ω = Bn = {z ∈ Cn : |z| < 1} is the unit ball then its Bergman
kernel is

K(z, ζ) =
Cn(

1− z · ζ
)n+1 , Cn =

n!

πn
,

so its properties (e.g. smoothness at the boundary) can be read off
directly from its expression. There are few other instances of domains
Ω ⊂ Cn where Bergman’s kernel may be explicitly computed. However
when Ω is a smoothly bounded strictly pseudoconvex domain then our
knowledge rests on a few classical results as follows. One such result is
N. Kerzman’s theorem that K ∈ C∞(Ω×Ω\∆) where ∆ = {(z, z) : z ∈
∂Ω} is the diagonal of the boundary. Proof is a wonderful application
of the solution to the ∂-Neumann problem.

Another such result, with deep differential geometric implications as
we shall see, is Fefferrman asymptotic formula for the Bergman ker-
nel. Precisely, again for any smoothly bounded strictly pseudoconvex
domain Ω = {ρ < 0} ⊂ Cn

(14) K(ζ, z) = CΩ|∇ρ(z)|2 · detLρ(z) ·Ψ(ζ, z)−(n+1) + E(ζ, z)

where E ∈ C∞(Ω× Ω \∆) and

(15) |E(ζ, z)| ≤ C ′Ω|Ψ(ζ, z)|−(n+1)+1/2 · | log |Ψ(ζ, z)||.

Here Lρ is the Levi form and

Ψ(ζ, z) = [F (ζ, z)− ρ(z)]χ(|ζ − z|) + (1− χ(|ζ − z|)) |ζ − z|2 ,

F (ζ, z) = −
n∑
j=1

∂ρ

∂zj
(z)(ζj − zj)− 1

2

n∑
j,k=1

∂2ρ

∂zj ∂zk
(z)(ζj − zj)(ζk − zk),

and χ(t) is a C∞ cut-off function with χ(t) = 1 for |t| < ε0/2 and
χ(t) = 0 for |t| ≥ 3ε0/4. By (14)

K(z, z)−1/(n+1) = |ρ(z)|
[
Φ(z) + E(z, z) |ρ(z)|n+1

]−1/(n+1)

where Φ(z) ≡ CΩ|∇ρ(z)|2 detLρ(z) stays finite near ∂Ω and (by (15))

|E(z, z)| |ρ(z)|n+1 ≤ C ′Ω|ρ(z)|1/2| log |ρ(z)|| → 0, z → ∂Ω.

Therefore K(z, z)−1/(n+1) vanishes at ∂Ω. Also, as Φ(z) 6= 0 near ∂Ω,
it may be shown that ∇K(z, z)−1/(n+1) 6= 0 along ∂Ω. Hence

ϕ(z) = −K(z, z)−1/(n+1)
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is a defining function for Ω. Let

θ =
i

2

(
∂ − ∂

)
ϕ, g =

∂2 logK(z, z)

∂zj ∂zk
dzj � dzk .

Mere differentiation shows that the Bergman metric g may be expressed
as

(16) g(X, Y ) =
n+ 1

ϕ

{
i

ϕ

(
∂ϕ ∧ ∂ϕ

)
(X, JY )− (dθ)(X, JY )

}
for any X, Y ∈ X(Ω), where J is the complex structure on Cn. For-
mula (16) relates computationally the Käbler geometry of (Ω, g) to
the contact geometry of (∂Ω, θ) and this relationship has already been
exploited by A. Korányi and H.M. Reimann in a beautiful paper (cf.
[17]) where they relax the hypothesis of Fefferman’s theorem that bi-
holomorphisms of smoothly bounded strictly pseudoconvex domains
extend smoothly at the boundary. If Φ : Ω → Ω is a boholomorphism
then its boundary values φ : ∂Ω→ ∂Ω must be a CR isomorphism and
in particular a contact transformation (i.e. φ∗H(∂Ω) ⊂ φ−1H(∂Ω)).
When Φ : Ω→ Ω is but a symplectomorphism (with respect to the sym-
plectic structure −i ∂∂ logK(z, z) underlying the Kählerian structure
of (Ω, g)) extending smoothly at the boundary, the result by Korányi
and Reimann alluded to is that its boundary values φ : ∂Ω → ∂Ω are
at least a contact transformation.

6. Boundary values of Bergman-harmonic maps

Let

Mδ = {z ∈ Ω : ϕ(z) = −δ}, δ > 0,

be the level sets of ϕ. For δ sufficiently small Mδ is still a smooth
real hypersurface, and a strictly pseudoconvex CR manifold for that
matter. Therefore there is a one-sided neighborhood V ⊂ Ω of ∂Ω
carrying a foliation F such that

V/F = {Mδ : 0 < δ ≤ δ0}

for some δ0 > 0. Let H(F)→ V and T1,0(M)→ V be respectively the
bundles whose portions over a leaf Mδ are the Levi distribution H(Mδ)
and the CR structure T1,0(Mδ) of the leaf. One has

T1,0(F) ∩ T0,1(F) = (0), T0,1(F) ≡ T1,0(F),

Z,W ∈ C∞(T1,0(F)) =⇒ [Z,W ] ∈ C∞(T1,0(F)).

The rudiments of a general theory of tangentially CR foliations has
been already started (cf. e.g. S. Dragomir and S. Nishikawa, [7]). By
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a result of J.M. Lee and R. Melrose there is a unique complex vector
field ξ of type (1, 0) on V such that

∂ϕ(ξ) = 1, ∂∂ϕ (ξ, Z) = 0, Z ∈ T1,0(F).

The function
r = 2 ∂∂ϕ (ξ, ξ)

is the transverse curvature of F . The same result by J.M. Lee and
R. Melrose (cf. [19]) shows that r is smooth up to the boundary i.e.
r ∈ C∞(Ω). Let ξ = 1

2
(N − iT ) be the real and imaginary parts of

ξ. Then T (ϕ) = 0 hence T ∈ T (F). Also T c dθ = 0 so that T is
transverse to H(F) and actually

T (F) = H(F)⊕ RT.
Let gθ be given by

gθ(X, Y ) = (dθ)(X, JY ), gθ(X,T ) = 0, gθ(T, T ) = 1.

Then gθ is a tangential Riemannian metric for F i.e. a Riemannian
bundle metric on T (F) → V (so that the pullback of gθ to a leaf of
F is the Webster metric of the leaf). A rather obvious consequence of
(16) is that the Bergman metric g of Ω and the tangential metric gθ
are related

(17) g(X, Y ) = −n+ 1

ϕ
gθ(X, Y ), X, Y ∈ H(F),

(18) g(X,T ) = 0, g(X,N) = 0, X ∈ H(F),

(19) g(T,N) = 0, g(T, T ) = g(N,N) =
n+ 1

ϕ

(
1

ϕ
− r
)
.

From the point of view of a differential geometer, the meaning (and
usefulness) of formulae (17)-(19) is that one may relate, in an effective
manner, linear connections on V parallelizing g to linear connections
on V parallelizing gθ. The linear connection parallelizing the Bergman
metric one wishes to deal with is the Levi-Civita connection of (Ω, g).
Indeed one wishes to study the Bergman-harmonic map equations

(20) −∆gΦ
i +
(
Γijk ◦ Φ

) ∂Φj

∂xA
∂Φk

∂xB
GAB = 0

whose principal part is the Bergman Laplacian

∆gu = −
2n∑
A=1

{
EA(EA(u))− (∇g

EA
EA)(u)

}
, u ∈ C2(Ω),

which is expressed (by using a local g-orthonormal frame {EA : 1 ≤
A ≤ 2n} of T (Ω)) in terms of covariant derivatives relative to ∇g, the
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Levi-Civita connection of (Ω, g). As to linear connections parallelizing
gθ, these are morally the Tanaka-Webster connections of the leaves of
F (since, as emphasized earlier, the pullback of gθ to a leaf of F is
the Webster metric of that leaf). Yet what one formally needs is a
linear connection on V , rather that on some leaf of F . One is thus led
to the question whether one may piece together the Tanaka-Webster
connections of the leaves of F . That this is indeed feasible is a result by
R. Graham and J.M. Lee (cf. [13]) producing a linear connection ∇ on
V whose pointwise restriction to each leaf Mδ is the Tanaka-Webster
connection of Mδ. It is the unique linear connection ∇ on V (referred
hereafter as the Graham-Lee connection) singled out by the following
axioms i) T1,0(F) is parallel with respect to ∇, ii) ∇Lθ = 0, ∇T = 0,
∇N = 0, and iii) the torsion T∇ is pure i.e.

T∇(Z,W ) = 0, T∇(Z,W ) = 2iLθ(Z,W )T,

T∇(N,W )rW + i τ(W ), Z,W ∈ T1,0(F),

τ (T1,0(F)) ⊂ T0,1(F), τ(N) = −J∇Hr − 2rT,

where

Lθ(Z,W ) = −i(dθ)(Z,W ), τ(X) = T∇(T,X), X ∈ T (V ).

Indeed (17)-(19) may then be used to relate ∇g to ∇. For instance

(21) ∇g
XY = ∇XY+

+

{
ϕ

1− ϕr
gθ(τX, Y ) + gθ(X,φY )

}
T−

−
{
gθ(X, Y ) +

ϕ

1− ϕr
gθ(X,φτY )

}
N

for any X, Y ∈ H(F). Here φ is defined by

φ : T (F)→ T (F),

φX = JX, φT = 0, X ∈ H(F).

Similar formulae may be got for ∇g
XT , ∇g

XN , ∇g
TN , ∇g

TT and ∇g
NN

hence we express ∇g as a function of the Graham-Lee connection and
the transverse curvature of F and its first order derivatives

(22) ∇g = f
(
∇, r,∇Hr, T (r), N(r)

)
.

The whole point is that, when we shall analyze (20) as ϕ → 0 (equiv-
alently as z → ∂Ω), the quantities gθ, ∇ and τ stay finite at the
boundary and give there the Webster metric, the Tanaka-Webster con-
nection, and the pseudohermitian torsion of the boundary. So does r
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and its derivatives of any order, by the J.M. Lee and R. Melrose result
recalled above. Formula (22) relies on the decomposition

(23) T (V ) = T (F)⊕ RN = H(F)⊕ RT ⊕ RN
(as (21) already suggests). To exploit said decomposition one chooses
a local orthonormal frame {Wα : 1 ≤ α ≤ n − 1} of T1,0(F) i.e.
gθ(Wα,Wβ) = δαβ and sets

Eα =

√
− ϕ

n+ 1
Wα , En =

√
2ψϕ

n+ 1
ξ, ψ ≡ ϕ

1− rϕ
.

Then {Ej : 1 ≤ j ≤ n} is a local orthonormal frame of T 1,0(V ) i.e.
g(Ej, Ek) = δjk, adapted to the decomposition (23) and (22) yields

(24) ∆g = − ϕ

n+ 1
∆b −

2ϕ(n− 1)

n+ 1
N+

+
ψϕ

n+ 1

{
N2 + T 2 +∇Hr + 2rN

}
where ∆b is given by

∆b =
n−1∑
α=1

(WαWα +WαWα −∇WαWα −∇Wα
Wα) .

(25)
(
Γijk ◦ Φ

) ∂Φj

∂xA
∂Φk

∂xB
GAB =

= − 2ϕ

n+ 1

(
Γijk ◦ Φ

){n−1∑
α=1

Wα(Φj)Wα(Φk)− 2ψ ξ(Φj) ξ(Φk)

}
.

Taking into account (24)-(25) the Bergman-harmonic map system (20)
may be written

(26) ∆bφ
i + 2(n− 1)Nφi − ψ

(
N2 + T 2 +∇Hr + 2rN

)
φi+

+2
(
Γijk ◦ φ

){n−1∑
α=1

Wα(φj)Wα(φk)− 2ψξ(φj)ξ(φk)

}
= 0.

Let φ = φf be the solution to the Dirichlet problem for the system (20)
with the boundary condition φ = f on ∂Ω with f ∈ C∞(∂Ω, S). Let
us assume that φ ∈ C∞(Ω, S). Then as ϕ→ 0 the equation (26) leads
to

(HSf)i + 2(n− 1)Nf i = 0, 1 ≤ i ≤ ν.

The normal derivatives of the map f : ∂Ω→ S may thus be determined
in terms of purely tangential quantities, a phenomenon looked upon as
typically non-elliptic. We close with the statement (cf. [5])
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Theorem 2. Let Ω ⊂ Cn (n ≥ 2) be a smoothly bounded strictly
pseudoconvex domain and g the Bergman metric on Ω. Let S be a
complete ν-dimensional (ν ≥ 2) Riemannian manifold of sectional
curvature Sect(S) ≤ κ2 for some κ > 0. Assume that S may be
covered by one coordinate chart χ = (y1, · · · , yν) : S → Rν. Let
f ∈ W 1,2(Ω, S) ∩ C0(Ω, S) be a map such that f(Ω) ⊂ B(p, µ) for
some p ∈ S and some 0 < µ < min{π/(2κ) , i(p)} where i(p) is the
injectivity radius of p. Let φ = φf : Ω → S be the solution to the
Dirichlet problem

(27) τg(φ) = 0 in Ω, φ = f on ∂Ω.

If f ∈ C∞(∂Ω , S) and φ ∈ C∞
(
Ω, S

)
then

(28) N(f i) = − 1

2(n− 1)
(HSf)i , 1 ≤ i ≤ ν,

for any local coordinate system (ω, yi) on S such that φ(Ω) ∩ ω 6= ∅
(f i = yi ◦ f). Also N = −JT and T is the characteristic direction
of ∂Ω. In particular if N(f i) = 0 then f : ∂Ω → S is a subelliptic
harmonic map.
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