ON QUASI MODULES AT INFINITY FOR VERTEX ALGEBRAS

HAISHENG LI AND QIANG MU*

ABSTRACT. A theory of quasi modules at infinity for (weak) quantum vertex
algebras including vertex algebras was previously developed in [Li6]. In this
current paper, we develop this theory of quasi modules at infinity for vertex
algebras further. Among the main results, we obtain a commutator formula
for general quasi modules at infinity and we establish a category equivalence
between the category of quasi modules at infinity for a certain family of vertex
algebras and the category of lowest weight modules for a certain family of Lie
algebras.

1. INTRODUCTION

In order to associate quantum vertex algebras to certain algebras such as cen-
terless double Yangians and the Lie algebra of pseudo-differential operators on the
circle, a theory of what were called quasi modules at infinity for quantum vertex al-
gebras was developed in [Li6]. The notion of (weak) quantum vertex algebra, which
was formulated in [Li3] (cf. [EK]), is a natural generalization of the notions of vertex
algebra and vertex super-algebra. Let V be a weak quantum vertex algebra. Note
that for a (quasi) V-module W, each vector v € V is represented by a formal series
Yw (v,z) € Hom(W, W ((x))). In contrast, for a (quasi) V-module at infinity M
each vector v € V is represented by a formal series Y37 (v, x) € Hom(M, M ((z~1))).
Normally, associative or Lie algebras are associated with vertex algebras or more
general quantum vertex algebras through their “highest weight” modules. A mat-
ter of fact is that certain algebras such as the Lie algebra of pseudo-differential
operators on the circle only admit “lowest weight” modules; they do not admit
nontrivial highest weight modules. This was the main motivation for developing
the theory of quasi modules at infinity. Indeed, this theory enabled us to asso-
ciate quantum vertex algebras to the aforementioned algebras through their lowest
weight modules.

Let V be a weak quantum vertex algebra. A V-module at infinity is a vector
space W equipped with a linear map

Yiw(ha): V- Hom(W, W ((z)))
V= YW(v7x)v

satisfying the conditions that Yy (1,2) = 1y and that for any u,v € V, there exists
a nonnegative integer k such that

(z1 — 22) Yoy (u, 1) Y (v, 22) € Hom (W, W((xfl,ac;l))) ,
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(1.1) rngW(Y(u,:rg)v,xg) = ((zl — IQ)kYW(U,.Tl)Yw(’U,JZQ)) oy =22+ -

For the definition of a quasi V-module at infinity, the second condition above is
replaced with the condition that for any u,v € V, there is a nonzero polynomial
p(z1,x2) such that

p(z1,x2)Yw (u, x1)Yw (v, 22) € Hom (W7 W((xfl,xgl))) ,

P(QUO + $2,$2)Yw(Y(U, -TO)Uv 372) = (p(1‘1, -T2)YW(’U’7 xl)YW(’U’x?)) |11=12+10'

It was proved therein that if V is a vertex algebra, the second condition in the
definition of a module at infinity amounts to the following opposite Jacobi identity

x5 6 <x1 — x2> Yiv (v, 22) Y (u, 21) — 56 <

Zo

T2 — T1

o ) Yw (u, z1)Yw (v, 22)

= m;lé (Jhx;;vo) Yw (Y (u, xo)v, x2).

Consequently, for a vertex algebra V', the notion of V-module at infinity is the
same as that of right V-module (see [HL], [Li2], [X]). But, for a quasi V-module
at infinity one has only a quasi opposite Jacobi identity, which is weaker than the
opposite Jacobi identity.

A notion of quasi module for vertex algebras was previously introduced in [Li4],
in order to associate vertex algebras to certain Lie algebras. Meanwhile, a notion
of vertex I'-algebra was also introduced with I' a group, where a vertex I'-algebra is
a vertex algebra V equipped with two group homomorphisms

L:T—-GL(V) and ¢: T — C*,
satisfying the condition that L(g)1 =1,
L(9)Y (v,z) = Y(L(g)v, ¢(9)x)L(g) forgeT, veV.

In [Li6], a notion of quasi V-module at infinity for a vertex I'-algebra V was studied.
For simplicity, consider the special case with T a group of linear functions g(z) =
ax + 8 with « € C*, 8 € C (with respect to function composition). In this case, a
quasi V-module at infinity is a quasi module at infinity (W, Yy, ) for V viewed as a
vertex algebra, which also satisfies

Y (L(g)v,x) = Yw(v,g ' (x)) forgel, veV.

In the present paper, we focus our attention on quasi modules at infinity for
vertex algebras and we develop the theory of quasi modules for vertex I'-algebras
further. As the main results of this paper, we obtain a commutator formula for
quasi modules at infinity for a general vertex I'-algebra V', which to a certain extent
is analogous to the twisted vertex operator commutator formula (see [FLM]). Just
as the twisted commutator formula is important in the study of twisted modules,
this commutator formula is important in the study of quasi modules at infinity for
vertex I-algebras. As an application of the commutator formula, we establish a
version of the converse of Theorem 5.14 in [Li6]. (Roughly speaking, this theorem
asserts that each restricted module for a certain Lie algebra with some parameters
is naturally a quasi module at infinity for a certain vertex I'-algebra.) In addition,
we generalize a technical result of [Li6] (Lemma 5.11), filling in a gap in the proof
of the aforementioned theorem.



This paper is organized as follows: In Section 2, we refine or extend several
results of [Li6] and we present a commutator formula. In Section 3, we present a
complete proof of Theorem 5.14 of [Li6] and establish a converse.

2. QUASI MODULES AT INFINITY FOR VERTEX ALGEBRAS

In this section, we first recall some basic results from [Li6] and we then refine
several results and establish a commutator formula for quasi modules at infinity.

We begin with some basic formal variable notations. First of all, throughout
this paper, vector spaces will be over C (the field of complex numbers) unless it
is stated otherwise. We shall use the formal variable notations and conventions as
established in [FLM] and [FHL]. In particular, for a vector space W, W{[z,z™!]]
and W([zi', 25 ']] denote the spaces of doubly infinite formal series with coefficients
in W, while W((z)) and W ((x1,22)) denote the spaces of lower truncated infinite
formal series. Recall also the formal delta functions:

x) = Zx”,

neL

s(3)-goa

neZ
Denote by C(z) the field of rational functions in variable  and by C(z1,z2) the
field of rational functions in z; and zs. We have canonical field embeddings:

tevas t Clx1,22) = C((21))((22)),
bty o Clan,x2) — C(a7 ) ((22)),
which extend the ring embeddings of C[z1, z5] into C((x1))((x2)) and C((z7 1)) ((z2)),

respectively.
Throughout this paper, we set

(2.1) G={az+p|a,BeC, a#0}CCla

which is considered as a group with respect to function composition. (Note that G
consists of all the linear transformations that preserve co.) For g(z) = az+ € G,
we have g71(2) = o~z — a~!3. We have a canonical group homomorphism

(2.2) P: G—-C*, glz)=az+ 0+ a.
Let g(z) = ax + 8 € G. For n € Z, we view g(z)" as an element of C((z~1)):
n __ n __ n n—i Qi n—1i
g(z)" = (ax + B) —Z <i>a Bla™ .
>0
It is understood that
(2.3) ( ) Zml g(x2)" Z Z < ) Q" Bl el
neZ n€Z i>0
For a vector space W over C, set
(2.4) E2(W) = Hom(W, W ((z™1))) € (EndW)[[z, 2 ]].

Vector space £°(W) (over C) is also naturally a module over C((x~1)). The identity
operator, denoted by 1y, is a special element of £°(W).
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Let a(z) =Y, cpanz™ "1 € £°(W) and let g(z) = ax+3 € G. As a convention
we define

_ —n—1 _ Ut P I S
a(g(x))—Zan(ax+ﬂ) —ZZ( ; )a Blanz ,
nez nezZ 1>0
which still lies in £°(W).
For g € G, define L, € End(£°(W)) by
(2.5) Ly(a(z)) =a(g~*(z)) for g € G, a(z) € EX(W).
This makes £°(W) a (left) G-module?.
Definition 2.1. Let V be a vertex algebra. A quasi V-module at infinity is a vector
space W equipped with a linear map
Yiw(,z): V= Hom(W,W((z™"))) C (EndW)[[z, 2~ ]]

v Yy (v,2) = Z V"1 (with v, € EndW),
nes

satisfying the conditions that Yu (1,2) = 1w (the identity operator on W) and
that for any u,v € V, there exists a nonzero polynomial p(z1,z2) such that

(2.6) p(z1, 2)Yiv (u, 71) Yy (v, 22) € Hom (W, W ((27",25")))
and

(p(z1, 22)Yw (u, 21) Y (v, 22)) a1 =y 20 = P(0 + 22, 22) Yiv (Y (1, 20)v, 22).
(2.7)
Remark 2.2. Note that for A(z1,22) € Hom(W, W ((z; ', 25"))) with W a vector
space,
A(zo + 0, 2) exists in (Hom(W, W((z;l)))) [[zo]]-
The condition (2.6) in Definition 2.1 guarantees that the expression on the left-hand
side of (2.7) exists. On the other hand, assume that (W, Yy ) is a quasi module at

infinity for a vertex algebra V and let u,v € V. Then (2.7) holds for any nonzero
polynomial p(z1,22) such that (2.6) holds.

We have the following result which strengthens Lemma 5.1 of [Li6]:

Proposition 2.3. Let (W,Yw) be a quasi module at infinity for a vertex algebra
V. Then for any u,v € V, there exists a nonzero polynomial p(x1,z2) such that

(2.8) p(z1, 22)Yw (v, 22)Yw (u, 1) = p(z1, 22) Y (u, 1) Y (v, 22)

and

(2.9) rglé (%) p(z1,22)Yw (v, 22) Yy (u, 21)

_ Ty — T
—x, 15 ( 2—:r0 1)p(zl,xQ)YW(u,wl)YW(v,zz)

= 1515 (xl — xo) p(z1, 22)Yw (Y (u, xo)v, z2).

€2

LAn action of G on £°(W) was defined in [Li6] by Ry(a(z)) = a(g(z)) for g € G, a(z) € E2(W).
In fact, this gives a right action instead of a left action because G is nonabelian.
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Proof. Lemma 5.1 in [Li6] asserts that there exists a nonzero polynomial p(x1,z2)
such that (2.8) holds, from which we see that (2.6) holds. From Remark 2.2, (2.7)
holds. Then (2.9) follows immediately from Lemma 4.2 therein. |

Definition 2.4. Let W be a vector space. A subset U of £°(W) is said to be quasi
local if for any a(x),b(z) € U, there exists a nonzero polynomial p(z1,x2) such that
(2.10) p(z1, 22)[a(z1), b(22)] = 0.

The following notion was due to [GKK]:
Definition 2.5. Let W be a vector space and let I" be a subgroup of G. A subset

U of £°(W) is said to be I'-local if for any a(x),b(z) € U, (2.10) holds with p(xy, z2)
a product of 1 — g(x2) with g € I' (not necessarily multiplicity-free).

Note that the relation (2.10), which can be written as
p(z1, w2)a(x1)b(x2) = p(x1, 2)b(z2)a(z1),
implies
(2.11) p(@1, z2)a(x1)b(x2) € Hom (W, W((z7?, x;l))) .
A subset U of £°(W) is said to be quasi compatible if for any a(x),b(x) € U,
there exists a nonzero polynomial p(z1,x2) such that (2.11) holds. Furthermore,
for a subgroup I' of G we define I'-compatibility correspondingly.

Now, let a(x),b(x) € £°(W). Assume that there exists a nonzero polynomial
p(z1,x2) such that (2.11) holds. We define

a(x),b(x) € E°(W) fornelZ
in terms of generating function

Yeo(a(x), xo)b(z) = Z a(z)pb(z)ey ™!

by
Yeo(a(z), 20)b(z) = tz—1 2, (W) (p(z1,2)a(1)b()) |2y =2-+a0s

where ;-1 ,, : C(z,z9) — C((z71))((x0)) is the unique extension of the embedding
of Clx, zo] into C((x71))((w0)).
The following result was obtained in [Li6] (Theorem 5.4):

Theorem 2.6. Let W be a vector space and let U be any quasi local subset of
E°(W). Then U generates a vertex algebra (U) with Yeo as the vertex operator
map and with 1y as the vacuum vector, and W is a quasi module at infinity with

Yw(a(z),z) =alz) for a(z) € (U).
The following was also essentially obtained in [Li6]:

Proposition 2.7. Let V be a vertex algebra and let W be a vector space equipped

with a linear map Yw (-, ) : V. — Hom(W, W ((z™1))) with Y (1,2) = 1. Set
Vv = {Yw (v,2) | v eV} C E(W).

Then (W,Yw) is a quasi V-module at infinity if and only if Viy is quasi local,

(Viw, Yeo, 1) carries the structure of a vertex algebra, and Yy is a vertex algebra

homomorphism from V' to Viy .



Proof. Assume that (W, Yy ) is a quasi V-module at infinity. By Proposition 2.3,
Vv is a quasi local subspace of £°(W). From [Li6] (the first half of the proof of
Lemma 5.9) we have

(2.12)  Yeo (Y (u, ), 20)Yw (v, 2) = Yiw (Y (u, 29)v,2) for u,v € V.

We also have Yy (1,2) = 1y. Then it follows that (Viy, Yeo, 1y) carries the struc-
ture of a vertex algebra and Yy is a homomorphism of vertex algebras. The other
direction is clear from Theorem 2.6. O

The following result generalizes Lemma 5.11 of [Li6]:

Lemma 2.8. Let W be a vector space and let a(x),b(x) € E°(W). Assume

(2.13) [a(z1), b(z2)] _jioAj(mQ); <ai2>j$1‘16 (%>

3y e () e (242,

i=1 j=0
where Aj(z), Bij(z) € E°(W), gi(x) € G with g;(x) # x for 1 <i < k. Then
x);jb(x) = —Aj(x)  for0<j<rm,
z)jb(z) =0 forj>r.

a

S

(
(2.14) (
Proof. Set

k
g(zr,2) = [] (21— 2)™* — (gi(@) — 2)"1)"" € Clay, a].

i=1
Noticing that
k
q(z1,2) = q(z1, ) H(l’l — gi(a))**!
i=1
for some q(x1,x) € C[z1,z] and that

o) () e (22 o

for 1 <i<k, 0<j<s, we have
0 7 -1 gi(r2)
— 0 =0.
q(z1,72) (8952) Ty ( 1

T

(215) q(ar, z2)la(ar), ba2)] = 3 aler,2) Aj(w2) <aa)j 2716 <E> :

=0

Then we get

Note that (2.15) implies
(1 — @2)" g(a1, ) [a(a1), b(w2)] = 0.
From the definition of Ygo we have

:L'S-Hq(.r + o, I)Ygo (a(az)7$0)b($) = ((1‘1 - x)T+ICI(ml>w)a(x1)b(x)> |m1:w+x0'
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Combining the two identities above with Lemma 4.2 of [Li6], we obtain

21 ( - 9”) (21 — &) g(r, 2)b(x)ale)

Zo

~53 (T2 ) o1 = ) P, )ate)blo)

70
T —x :
= x_lé <%) ({L’l —{L')7+1 (.Tl, )Ygo( ( ) :Eo)b(:E)
Applying Res,,z," " to both sides, we get
1 o\
oo la(en) 6] = S andte) o) () 59 (7).
which is a finite sum. Combining this with (2.15) we obtain

(216) 3 (Ai() + al)ib(x)) i—l!q(:rl,x) (;ﬂc)ix;la (%) 0,

i>0
where we set A;(z) = 0 for ¢ > r. Notice that we have

(1, @) = (21 — 2)" " Py, 2) + Q(x),

where P(z1,x) is a polynomial and

Q( _ Ic(e+1) H (r+1)(e+1)

J
(x1 — JU)T'H (%) w;lé <§) =0 for0<j<r,
1

(2.16) reduces to

Since

i>0
From [Lil] (Lemma 2.1.4), we get
(A;(x) + a(x);b(x)) Q(x) =0 for i > 0.

Since g;(z) # x for 1 < ¢ < k, we have Q(x) # 0. Then our assertions follow
immediately. 0

As a generalization and a corollary of Lemma 2.8 we have:
Proposition 2.9. Let W be a vector space and let a(x),b(x) € E2(W). Assume
o\ -1 gi(x2)
(217)  [a(z ZZAU I9) = <—2> ) ( - ) :
=1 j=0

where A;j(x) € E2(W) and g;(x) € G distinct for 1 <i < k. Then

D(gi)algi());b(z) = —Ay(x)  for0<j<r,
(2.18) ®(g:)algi(x));b(x) =0 for j >,
where ® : G — C* was defined before by ®(g) = « for g(z) = ax+ [ € G.

7



Proof. Let g(z) = ax + 8 € G (with a € C*, § € C). We have

até (—g(x2)> =z 16 (Lz ha 5) =a "ty 's <L - B)
X X1 QT
—1 -1 -1
= a'ay's (7()[ L *3) = ®(g) 256 (79 (x1)> :
ZTo €2
Using this, from (2.17) we have
k j -
Loy 9i '9(x1)
_ N—=14.. - = —1 Ji I\~
oaton) e = 33000 o) (5 ) oo (22m).
Taking g(z) = g;(z) with 1 <¢ <k, by Lemma 2.8 we obtain
a(gi(x));b(x) = —@(g:) "' Aij(z) for0<j<r
and a(g;(x));b(z) = 0 for j > r, as desired. O
The following technical result generalizes a result of [GKK]:
Lemma 2.10. Let W be a vector space, let
A(‘Tlva) € Hom (Wv W((Igl))[[ml,l’flﬂ) )

and let
plan,wa) = [ [ (@1 — gi(w2))™,
i=1
where g1(x), ..., g-(x) are distinct elements of G and ky, . .. , k. are positive integers.

Then p(x1,x2)A(z1,22) = 0 if and only if
r k;—1 j
N N 1o gila2)
(2.19) Az, my) = ; ; Ayj(xa) (8@) ) (Tl)
for some A;;(x) € E2(W).

Proof. The “if” part is clear. For the “only if” part, we first consider the case r = 1.
Note that for any h(z) € G, A(z1, h(z2)) exists in Hom (W, W ((z3"))[[z1,27']]).
Let us simply use g(x) for g;(x). We see that

(21 — g(@2))" A1, 2) = 0
if and only if
(x1 — z2)* A1, 97 (22)) = 0.
It was known (see [K2], [DLM]) that the latter is equivalent to

(2.20) Azy, g7 (x2)) = gBj(mQ) <822>] 2716 (%)

for some B;(z) € (EndW)[[z,271]] . For 0 < j <k — 1, since

oY T
_ ey —1g (22} _ 4
Res,, (71 — x2) <8x2) ] 0 <x1> ik

1 .
Bj(z9) = ﬁReSm (21 — 22)? Az1, 97 ' (22)).

8
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As A(z1,97 (22)) € Hom (W, W((z5"))[[z1,27']]), we get Bj(z) € E2(W). It is
clear that (2.20) is equivalent to

k—1

221)  Alwras) = 3 By(g(ea) () (f@)jxflé (£22)

iy
=0 !

under the condition that Bj(z) € E°(W) for 0 < j < k — 1.
We next consider the general case. For 1 <14 <r, set

pi(T1,22) = ( p(w1, o) € Clxy, z2a].

x1 — gi(w2))ke
Note that p;(z1,22) with 1 < i < r, viewed as polynomials in 21 with coefficients
in C(z3), are relatively prime. Then there exist g;(z1,z2) € C(zg)[z1] for 1 <i <r
such that
L= pi(w1, w2)qu (1, 22) + - + pr(z1, v2)qr (21, T2).

Recall the field embedding ¢y o0 : C(z) — C((z~!)). This gives an algebra embed-
ding of C(x2)[x1] into C((25"))[x1]. Denote by g;(x1,z2) the image of ¢;(x1, x2) in
C((x3"))[x1]. We have

1=pi(z1,x2)q1 (21, 2) + - - + pr(@1, 22) G (21, ©2)
in C((z51))[x1], so that

k
(2.22) Ay, w2) =Y pi(w1,72)qi(w1, 72) A1, 72).
i=1
Note that
(21 — gi(22)) ¥ pi (21, 22)Gi (1, 22) A1, 22) = 0
and p; (21, 22)q;(x1, x2) A(z1,22) € Hom (I/V7 W((xgl))[[xl,xfl]]) . Then it follows
immediately from (2.22) and the special case. O

The following is a variation of the notion of I'-vertex algebra, introduced in [Li6]
(cf. [Lid])%:

Definition 2.11. Let T' be a group. A wertex I'-algebra is a vertex algebra V
equipped with two group homomorphisms

L: T—-GL(V) and ¢: I —C*,
satisfying the condition that L(g)1 =1 for g € T and
(2.23) L(9)Y(u,z)v =Y (L(g)u,d(g9)x) L(g)v forgeT, u,veV.

It is clear that for any group H equipped with a homomorphism from H to T,
a vertex [-algebra V is naturally a vertex H-algebra. Define a homomorphism of
vertex I'-algebras from U to V to be a homomorphism 6 of vertex algebras such
that

O(L(g)u) = L(g)0(u) forgeTl, uel.

2The notion of vertex I-algebra here with respect to the pair (I', ) amounts to the notion of
I-vertex algebra in [Li6] with respect to (T, ¢~ 1).
9



Remark 2.12. Let V be a Z-graded vertex algebra in the sense that V' is a vertex
algebra equipped with a Z-grading V' = ®nezV(y) such that

UV € Vimgn—k—1) for u € Viu,), v € Vi), m,n, k € Z.
Let L(0) denote the linear operator on V, defined by
L(0)v =nv for v € Viny, n € Z.

Let I be any automorphism group of V', which preserves the Z-grading, and let
¢ : ' — C* be any linear character. For g € T, set L(g) = #(g)*(®g. Then it can
be readily seen that V' becomes a vertex I'-algebra.

The following is a modification of the same named notion introduced in [Li6]*:

Definition 2.13. Let V be a vertex I'-algebra. A quasi V-module at infinity is a
quasi module at infinity (W, Yy ) for V viewed as a vertex algebra, equipped with
a group homomorphism

v: I -G,
satisfying the condition that ¢ = ® o U,
(2.24) Yw (L(g)v, z) = Y (v, ¥(g) " (z)) forgel, veV,

and {Yw (v, z) | v € V} is ¥(T")-local.

Lemma 2.14. In Definition 2.13, the condition that {Yw (v,x) | v € V} is ¥(T)-
local can be replaced with a weaker condition that for any u,v € V, there exists a
product q(x1,x2) of linear polynomials 1 — g(xz2) with g € V(') such that

(2.25) q(z1, 22)Yw (u, 21) Y (v, 22) € Hom (W, W ((z7",23"))) .

Proof. Let u,v € V. Assume that q(z1,22) is a product of linear polynomials
21 — g(x2) with g € W(T') such that (2.25) holds. From Proposition 2.3, there exists
a nonzero polynomial p(x1, z2) such that

(e, 2)Yw (u, z1)Yw (v, 22) = p(x1, v2)Yw (v, 22) Y (u, 21).

Then

p(z1,x2) (q(z1, 22)Yw (u, 21)Yw (v, 22) — q(x1, 22) Y (v, 22) Yy (u, 1)) = 0.

From definition, g(z1,22)Yw (v, z2)Yw (u,z1) lies in Hom (W,W((x;l))((xfl)))
As (2.25) holds, q(z1, x2)Yw (u, z1) Y (v, 22) also lies in Hom (W, W((x;l))((a:fl)))
Consequently, (multiplying by lag?, (1/p(x1,22))) we get

—1
Ty

q(z1, z2)Yw (u, 21)Yw (v, 22) = q(x1, 22)Yw (v, 22) Y (u, 21).

This proves that {Yyw (v,z) | v € V'} is ¥(I')-local. O

Recall the (left) group action of G on £°(W). We have (cf. [Li6], Theorem
5.10)*:

3The only change from the original definition is in (2.24), to incorporate the change of the
right action R of G on £°(W) to the left action L.

4This is the corrected version of Theorem 5.10 in [Li6] with the right action R of T’ replaced
with the left action L.
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Theorem 2.15. Let W be a vector space, let I' be a subgroup of G, and let U be
a I-local subset of E°(W). Then T - U is I'-local and the vertex algebra (I - U)
generated by T' - U is a vertex I'-algebra where ¢ = ® and L is given by L(g) = L,
for g €I, that is
L(g)a(z) = a(g~(z)) forg €T, a(x)e (L U).
Furthermore, W is a quasi module at infinity for (I' - U) with Yy (a(x),2) = a(z)
fora(z) € (T -U) and with ¥ = 1.
Proof. As Ly = R;—1 on E°(W) for g € G, Lemma 3.13 of [Li6] asserts that
LyVeo(al@), 0)b(x) = Yeo (Lya(z), ®(g)w0) Lyb(x)

for g € I, a(x),b(z) € (I'- U). This together with Theorem 2.6 confirms the first
assertion on the vertex I'-algebra structure. As for the structure of a quasi module
at infinity, we have

Y (Lga(x),z0) = Y (alg™" (2)), z0) = a(g™" (z0)) = Y (a(z), g~ (20))
for g € T, a(z) € (' - U). On the other hand, it follows from Proposition 3.14
of [Li6] and induction that (I - U) is I'-local. This confirms the second assertion

that W is a quasi module at infinity for (I"- U) viewed as a vertex I'-algebra with
Yw (a(z),z0) = a(zg) for a(z) € (I' - U). O

The following refinement of Proposition 2.7 is straightforward:

Proposition 2.16. Let V' be a vertex I'-algebra, let ¥ : I' — G be a group homo-
morphism such that ® oW = ¢, and let W be a vector space equipped with a linear
map Y (-, ) : V. — Hom(W, W ((x™1))) with Y (1,2) = 1y Set

Viw ={Yw(v,z) |veV}cC&(W).
Then (W,Yw) is a quasi V-module at infinity if and only if Viy is ¥(I')-local,
(Viv, Yeo, 1y ) carries the structure of a vertex ¥(T')-algebra, and Yy : V. — Vi

is a homomorphism of vertex I'-algebras, where Vi is viewed as a vertex I'-algebra
through the homomorphism ¥ :T'— ¥(T') C G.

As the main result of this section, we have the following analog of the twisted
vertex operator commutator formula (see [FLM]):

Theorem 2.17. Let V be a vertex I'-algebra with group homomorphisms L : T' —
GL(V); ¢ : T' — C*, let (W,Yw) be a quasi V-module at infinity with group
homomorphism ¥ : I' — G, and let u,v € V. Then there exist finitely many
01y...,00 €' such that V(o;) (i=1,...,r) are distinct in G and

(2.26)  [Yw (u, 1), Yw (v, 22)]
- - LN s (o) ()
- S el e (e (o) ara (Mol tee)),
Furthermore, if ¥ : I' — G is one-to-one, then
(227) [Yw(u,l'l),YW(U,l'z)]
_ - Lo 1o (%o)  (x2)
which is a finite sum.

11



Proof. From definition, there exist distinct g1(z),...,g-(z) € ¥(I') C G and posi-
tive integers ki, ..., k, such that

(2.28) (H(m - gz(xz))k> [Yw (u, 1), Yiv (v, 22)] = 0.

i=1

In view of Lemma 2.10, we have

(2.29)  [Yw (u,21), Yiv (v, 22)] _;i:jflm(xz); ((z;;)jwflé (gﬁz))

for some A;;(z) € £°(W). By Proposition 2.9, we get
Aij(x) = =P(9:)Yw (u, 9:(2)) ;Yw (v, 7),

where Y (u, g;(x)) and Yw (v, x) are viewed as elements of E2(W). Let 01,...,0, €
T such that ¥(o;) = g; '(z) for 1 < i <r. As Yiw(L(0:)u,z) = Yy (u, g;(x)) and
(g;) = ®(V(0; 1)) = ¢(0;) ", we have

Ay (@) = —8(02) Vv (L(o:)u, @), Yiv (v, 2).
Recall from Proposition 2.7 that
(2.30)  Yeo(Yw(a,x),20)Yw (b, z) = Yy (Y (a,z9)b,z) for a,be V.
Using this we obtain

[Yw (u, 1), Yiv (v, z2)]

s ZUL _ Avs
— Ry, 3000 Ver (VivlLloous ). o) Vv (v, an)e™ oy 1 (422

i=1 1

= Resey 3 0000 Wi (Y (L(os)u, B(g:) " w0)v, 72) €0 F5 2715 (““”)
£ 1
=1

= Resey 30600 Vi (V (Lo o)) 7o (222,

T
i=1 1

as desired.

Suppose V¥ is one-to-one. Let o € " with o # o; for 1 < ¢ < r. Set g(x) =
U(oc~1) € G. Then g(z) # gi(z) for 1 <4 <r. Combining (2.29) with Proposition
2.9, we have

Yw(u,g(x));Yw(v,z) =0 for j >0,

ie.,
Yeo (Yw (u, 9(2)), z0) Yw (v, 2) € E°(W)[[zo]]-
Using Proposition 2.7 we have
Yw Y(L(o)u,z0)v,2) = Yeo Yw(L(o)u,x),z0) Y (v,2)
= Yg" (YW(U,g(l’)),z’o) YW(UVT)'
Consequently, Yi (Y (L(o)u, zo)v, ) involves only nonnegative powers of xo. Thus
Resy, Yw (Y (L(o)u, xo)v,mg)ez"%xflé (M> =0.
1

Then the second assertion follows immediately. O
12



The following technical result is a modification of Lemma 5.9 in [Li6] with a
slightly different proof:

Lemma 2.18. Let V' be a vertex I'-algebra, let ¥ : T' — G be a group homomor-
phism with ® o W = ¢, and let (W,Yw) be a quasi module at infinity for V viewed
as a vertex algebra. Assume that Uy = {Yw (u,z) | u € U} is U(T")-local and

Y (L(g)u, x) = Y (u,¥(9)"'(z)) forgel, uel,
where U is a I'-submodule which generates V' as a vertex algebra. Then (W, Yy ) is

a quasi V-module at infinity.

Proof. From assumption, Uy is a ¥(T")-local subset of E°(W). For g € T, u € U,
we have

(2.31) Yiw (L(g)u, z) = Y (u, ¥(g) " (2)) = Ly () Yw (u, z)).

It follows that Uy is stable under the subgroup ¥(I') of G. By Theorem 2.15,
we have a vertex W(I')-algebra (Uyw ) with W as a quasi module at infinity. Since
(W, Yw ) is a module at infinity for V viewed as a vertex algebra, in view of Propo-
sition 2.7, Yy is a homomorphism of vertex algebras from V to (Uw).

Suppose that

Yw (L(g)u, z) = Yw (u, ¥(g) ™" (z)) and Yiv (L(g)v,z) = Yw (v, ¥(9) ™' (2)
for some g € I', u,v € V. Then we have
Yir (L(9)Y (u, 30)0, 2)
= Yw (Y(L(9)u, (g)z0) L(g)v, )
= Yeo (Yw(L(g)u, x), 6(g)20) Yww (L(g)v, )
= Yeo (Y (u, ¥(9) ™' (@), #(9)xo) Yw (v, ¥(9) ™ ()
= Ly(gYeo (Yw (u,x),x0) Y (v, 2)
= LyYw (Y (u,z0)v, )
= Yw(Y(u,z0)v, ¥(g) " (2)).
As U generates V' as a vertex algebra, it follows from (2.31) that
Yw(L(g)v,x) = Ly(g) Yw(v,2)) forallgeTl, veV.

That is, Yy is a homomorphism of vertex I'-algebras. By Proposition 2.16, (W, Yy)
is a quasi V-module at infinity. 0

3. LIE ALGEBRA §(00)[I'] AND VERTEX ALGEBRA V;(¢,0)

In this section, we recall from [Li6] the Lie algebra g(oo)[I'] and the main results
on the relation between g(oo)[I'] and vertex algebra V;(¢,0), including Theorem
5.14, and as our main result we establish the converse of this theorem.

Let g be a (possibly infinite-dimensional) Lie algebra equipped with a non-
degenerate symmetric invariant bilinear form (-,-). Associated to the pair (g, (-, ")),
one has an (untwisted) affine Lie algebra

g=g®C[tt '] e Ck,
where k is central and

la®@t™,b@t"] = [a,b] @t + mdyin0(a, bk
13



for a,b € g, m,n € Z. Defining deg(g ® t™) = —m for m € Z and degk = 0 makes
g a Z-graded Lie algebra. For a € g, form a generating function

a(z) = Z(a @tM)z "L
nez
Let £ be a complex number. Denote by C, the 1-dimensional (g ® C[t] & Ck)-
module with g®C[t] acting trivially and with k acting as scalar £. Form the induced
g-module

(3.1) V5 (£,0) = U(8) ®u(gacieck) Ce-

Set 1 =1® 1 and then identify g as a subspace of Vj(¢,0) through the linear map
a — a(—1)1. It is well known (cf. [FZ]) that there exists a unique vertex-algebra
structure on V;(¢,0) with 1 as the vacuum vector and with Y(a,z) = a(x) for
a € g. Defining degl = 0 makes V;(¢,0) a Z-graded g-module and the vertex
algebra Vj;(¢,0) equipped with this Z-grading is a Z-graded vertex algebra.

Let T' be a subgroup of Aut(g, (-,-)), consisting of automorphisms of g that
preserve (-,-). Each g € T lifts canonically to an automorphism of the Z-graded Lie
algebra g, and then to an automorphism of the Z-graded vertex algebra Vj(¢,0).
In this way, I" acts on vertex algebra Vj(¢,0) by automorphisms that preserve the
Z-grading. Let ¢ : I' — C* be any group homomorphism. For g € T, set

L(g) = ¢(9)" Vg € GL(V4(¢,0)),

where L(0) denotes the linear operator on V;(¢,0) defined by L(0)v = nv for v €
Va(£,0) () with n € Z. This defines a vertex I'-algebra structure on Vj(¢,0).
Consider the following completion of affine Lie algebra g:

(3:2) g(c0) =g C((t7)) & Ck,
where
(3.3) la®p(t),b® q(t)] = [a,b] @ p(t)q(t) + Resip' (t)q(t){a, b)k

for a,b € g, p(t), q(t) € C((t™1)).
The following is a construction of a family of new Lie algebras by using Lie

algebra §(oo) (cf. [Li6], Proposition 5.12; [GKK])®:

Proposition 3.1. Let g be a Lie algebra equipped with a non-degenerate symmet-
ric invariant bilinear form (-,-) and let I' be an automorphism group of (g, (-,")),
satisfying the condition that for any u,v € g,

[gu,v] =0 and (gu,v) =0 for all but finitely many g € T

Let ¥ : T' — G be a group homomorphism and set g(z) = ¥(g)(z) € G for g € T.
Define a new bilinear multiplicative operation [-,-|r on vector space g(oco) = g ®

C((t™1)) ® Ck by
[a®p(t),klr =0=[k,a®p(t)r,

[a@p(t),b®q(t)lr =Y _[ga,b] @ p(g~" (t))a(t) + Rest@l(t)%ﬁ(g_l (t))(ga, bk
gel

5This is the corrected version of Proposition 5.12 in [Li6]. In the original proof, an action of I’
on §(oo) was defined by
9(a ® p(t) + Ak) = ga © p(g(t)) + Ak
forgeT, acg, pt) € C((t1)), A € C, which is not a left action if ¥(T) is not abelian.
14



fora,b e g, p(t),qt) € C((t71)). Then the subspace, linearly spanned by vectors

ga®@p(t) —a®p(g(t))

forgeT, acg, p(t) € C((t71)), is a two-sided ideal of the non-associative algebra,
and the quotient algebra, which we denote by §(oco)[T'], is a Lie algebra.

Proof. For g €T, a € g, p(t) € C((t™1)), A € C, define
gla®p(t) + Xk) = ga @ p(g~ (1)) + k.

It is straightforward to show that I" acts on g(oo) by automorphisms, satisfying the
condition that for any u,v € §(c0),

[gu,v] =0 for all but finitely many g € T
Then it follows immediately from [Li5] (Lemma 4.1). O

Let
7 §(00) — g(o0)[I]
denote the natural linear map. For a € g, set
(3.4) ar(z) =Y ma@t)e """ € (§(c0)[1)) [[z, 27 ]].
nez
Define a linear character ¢ : I' — C* by

d

o(g) = %\I/(g)(x) forgeT.

We say that a g(oo)[[']-module W is of level £ € C if k acts on W as scalar .
The following is a modification of Lemma 5.13 in [Li6]:

Lemma 3.2. Let W be a vector space and let ¢ € C. Then a g(o0)[I']-module
structure of level £ on W amounts to a linear map

0: g—E°W); aw aw(z),

satisfying the conditions that

(3.5) (9a)w () = ¢(9) " aw (g~ (z))
forg e, a€g and that
(3.6) law (z1), bw (22)]
_ a ) g ' (z2) a ir—l g ! (x2)
- g;[g ,Olw (z2)7] 5( 2 )+12<g ,b>a$2.1 5( o )
fora,beg.

Proof. Let g(z) = ax + B € G with a € C*, 8 € C. Then g~ }(z) = a”l(z — B)
and

2715 (QS)> =215 (atxﬁ) =a~1t715 (%) =a~lt71s (glt("”)> .
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Using this we get

(9a)r (=) Y mlga®tMe = wa@g(t))z "

nez nez

- e (asas(10))
— e (ases (22

= ¢(9) tar(g~" (),
proving (3.5). As for (3.6), notice that

Yo @ty ey = ayte (91(’5)) e <i)

m,nez o1
-1
t
s (£ g (1)
X X9

d
Res; Z t”ag_l(t)m:rfmflmgnfl

m,ne’

— —Rest § 7’Lt"71971 (t)mxl—m—llé—n—l
m,ne”z

_ O i (97 )N s (72
= Restamml 6( o t 6(1?)

= 0 (9w
- 8.%‘2951 5( T '

Then (3.6) follows from the construction of g(oco)[I]. O

We have (cf. [Li6], Theorem 5.14)°:

Theorem 3.3. Let { € C and let W be any g§(co)[I']-module of level £ such that
ar(z) € E°(W) for a € g. Then there exists a unique structure of a quasi module at
infinity on W for the vertex I'-algebra Vg, (—£,0) with Yw (a,z) = ar(x) for a € g,
where g° denotes the opposite Lie algebra of g.

Proof. Set

and

U={ar(z) |a€g}cC&EW).

For a,b € g, there exist g1,...,g. € I' such that [ga,b] = 0 and (ga,b) = 0 for
g ¢{91,--.,9-}. It follows from (3.6) that

(@1 = g7 (22))* -+ (21 = g, (22))*[ar (21), br(z2)] = 0.
Thus U is a I-local subspace of £2(W). From (3.5), I' - U = U. By Theorem 2.15,
U generates a vertex I'-algebra (U) with W as a quasi module-at-infinity where
Yw (a(z),x0) = afxo) for ax) € (U). Combining (3.6) with Lemma 2.8 we get
ar(z)obr(z) = —[a,br(z), ar(z)ibr(z) = —€{a,b)lw, and ar(z),br(z) =0
for n > 2. In view of the universal property of V. (—¢,0) (cf. [Li5]), there exists a
vertex-algebra homomorphism from Vi, (—£,0) to (U), sending a to ar(z) for a € g.

6This is a corrected version of Theorem 5.14 in [Li6] with a complete proof.
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Consequently, W is a quasi module-at-infinity for Vi (—¢,0) viewed as a vertex
algebra. Furthermore, for g € I, a € g we have

Y (L(g)a, x) = Y (6(9)"Vga, x) = ¢(9)(9a)r(z) = ar(g™" () = Yiv (a, 97" ().
As g generates VgAU(—E7 0) as a vertex algebra, it follows from Lemma 2.18 that W
is a quasi module-at-infinity for V., (—¢,0) viewed as a vertex I'-algebra. 0

Furthermore, we have the following converse of Theorem 3.3:

Theorem 3.4. Let (W, Yy ) be any quasi module at infinity for the vertex T'-algebra
Vo (—¢,0) such that the associated homomorphism ¥ :T' — G is one-to-one. Then
W is a module for Lie algebra g(co)[I'] of level £ with ar(z) = Yw (a,x) fora € g.

Proof. Note that for u,v € g C Vi (—/¢,0), we have
uov = —[u,v], uv = —f{u,v)1, and w;o =0 fori> 2.
Let a,b € g. Using Theorem 2.17 and the facts above we get
[Yw (a,z1), Yo (b, z2)]

= = Ywl(lga,b],z2)a27's <g_;($2)> +£<ga,b>a%2x;16 (g_l(”)> ,

ger 1 T1
noticing that L(g) = #(g)*(®g and L(0)a = a. On the other hand, we have

Yw (ga, z) = ¢(9) " Yw(L(g)a,z) = é(9) ' Yw(a,g~'(z)) forg€eTl, a€g.
It then follows from Lemma 3.2 that W is a module for g(oo)[I'] of level ¢ with
ar(z) = Yw(a,x) for a € g. O
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