
ON QUASI MODULES AT INFINITY FOR VERTEX ALGEBRAS

HAISHENG LI AND QIANG MU*

Abstract. A theory of quasi modules at infinity for (weak) quantum vertex
algebras including vertex algebras was previously developed in [Li6]. In this

current paper, we develop this theory of quasi modules at infinity for vertex

algebras further. Among the main results, we obtain a commutator formula
for general quasi modules at infinity and we establish a category equivalence

between the category of quasi modules at infinity for a certain family of vertex

algebras and the category of lowest weight modules for a certain family of Lie
algebras.

1. Introduction

In order to associate quantum vertex algebras to certain algebras such as cen-
terless double Yangians and the Lie algebra of pseudo-differential operators on the
circle, a theory of what were called quasi modules at infinity for quantum vertex al-
gebras was developed in [Li6]. The notion of (weak) quantum vertex algebra, which
was formulated in [Li3] (cf. [EK]), is a natural generalization of the notions of vertex
algebra and vertex super-algebra. Let V be a weak quantum vertex algebra. Note
that for a (quasi) V -module W , each vector v ∈ V is represented by a formal series
YW (v, x) ∈ Hom(W,W ((x))). In contrast, for a (quasi) V -module at infinity M
each vector v ∈ V is represented by a formal series YM (v, x) ∈ Hom(M,M((x−1))).
Normally, associative or Lie algebras are associated with vertex algebras or more
general quantum vertex algebras through their “highest weight” modules. A mat-
ter of fact is that certain algebras such as the Lie algebra of pseudo-differential
operators on the circle only admit “lowest weight” modules; they do not admit
nontrivial highest weight modules. This was the main motivation for developing
the theory of quasi modules at infinity. Indeed, this theory enabled us to asso-
ciate quantum vertex algebras to the aforementioned algebras through their lowest
weight modules.
Let V be a weak quantum vertex algebra. A V -module at infinity is a vector

space W equipped with a linear map

YW (·, x) : V → Hom(W,W ((x−1)))
v �→ YW (v, x),

satisfying the conditions that YW (1, x) = 1W and that for any u, v ∈ V , there exists
a nonnegative integer k such that

(x1 − x2)kYW (u, x1)YW (v, x2) ∈ Hom
(
W,W ((x−11 , x−12 ))

)
,
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xk
0YW (Y (u, x0)v, x2) =

(
(x1 − x2)kYW (u, x1)YW (v, x2)

) |x1=x2+x0 .(1.1)

For the definition of a quasi V -module at infinity, the second condition above is
replaced with the condition that for any u, v ∈ V , there is a nonzero polynomial
p(x1, x2) such that

p(x1, x2)YW (u, x1)YW (v, x2) ∈ Hom
(
W,W ((x−11 , x−12 ))

)
,

p(x0 + x2, x2)YW (Y (u, x0)v, x2) = (p(x1, x2)YW (u, x1)YW (v, x2)) |x1=x2+x0 .

It was proved therein that if V is a vertex algebra, the second condition in the
definition of a module at infinity amounts to the following opposite Jacobi identity

x−10 δ

(
x1 − x2

x0

)
YW (v, x2)YW (u, x1)− x−10 δ

(
x2 − x1
−x0

)
YW (u, x1)YW (v, x2)

= x−12 δ

(
x1 − x0

x2

)
YW (Y (u, x0)v, x2).

Consequently, for a vertex algebra V , the notion of V -module at infinity is the
same as that of right V -module (see [HL], [Li2], [X]). But, for a quasi V -module
at infinity one has only a quasi opposite Jacobi identity, which is weaker than the
opposite Jacobi identity.
A notion of quasi module for vertex algebras was previously introduced in [Li4],

in order to associate vertex algebras to certain Lie algebras. Meanwhile, a notion
of vertex Γ-algebra was also introduced with Γ a group, where a vertex Γ-algebra is
a vertex algebra V equipped with two group homomorphisms

L : Γ→ GL(V ) and φ : Γ→ C
×,

satisfying the condition that L(g)1 = 1,

L(g)Y (v, x) = Y (L(g)v, φ(g)x)L(g) for g ∈ Γ, v ∈ V.

In [Li6], a notion of quasi V -module at infinity for a vertex Γ-algebra V was studied.
For simplicity, consider the special case with Γ a group of linear functions g(x) =
αx+ β with α ∈ C

×, β ∈ C (with respect to function composition). In this case, a
quasi V -module at infinity is a quasi module at infinity (W,YW ) for V viewed as a
vertex algebra, which also satisfies

YW (L(g)v, x) = YW (v, g−1(x)) for g ∈ Γ, v ∈ V.

In the present paper, we focus our attention on quasi modules at infinity for
vertex algebras and we develop the theory of quasi modules for vertex Γ-algebras
further. As the main results of this paper, we obtain a commutator formula for
quasi modules at infinity for a general vertex Γ-algebra V , which to a certain extent
is analogous to the twisted vertex operator commutator formula (see [FLM]). Just
as the twisted commutator formula is important in the study of twisted modules,
this commutator formula is important in the study of quasi modules at infinity for
vertex Γ-algebras. As an application of the commutator formula, we establish a
version of the converse of Theorem 5.14 in [Li6]. (Roughly speaking, this theorem
asserts that each restricted module for a certain Lie algebra with some parameters
is naturally a quasi module at infinity for a certain vertex Γ-algebra.) In addition,
we generalize a technical result of [Li6] (Lemma 5.11), filling in a gap in the proof
of the aforementioned theorem.
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This paper is organized as follows: In Section 2, we refine or extend several
results of [Li6] and we present a commutator formula. In Section 3, we present a
complete proof of Theorem 5.14 of [Li6] and establish a converse.

2. Quasi modules at infinity for vertex algebras

In this section, we first recall some basic results from [Li6] and we then refine
several results and establish a commutator formula for quasi modules at infinity.
We begin with some basic formal variable notations. First of all, throughout

this paper, vector spaces will be over C (the field of complex numbers) unless it
is stated otherwise. We shall use the formal variable notations and conventions as
established in [FLM] and [FHL]. In particular, for a vector space W , W [[x, x−1]]
and W [[x±11 , x±12 ]] denote the spaces of doubly infinite formal series with coefficients
in W , while W ((x)) and W ((x1, x2)) denote the spaces of lower truncated infinite
formal series. Recall also the formal delta functions:

δ(x) =
∑
n∈Z

xn,

x−11 δ

(
x2
x1

)
=
∑
n∈Z

x−n−1
1 xn

2 .

Denote by C(x) the field of rational functions in variable x and by C(x1, x2) the
field of rational functions in x1 and x2. We have canonical field embeddings:

ιx1,x2 : C(x1, x2)→ C((x1))((x2)),

ιx−1
1 ,x2

: C(x1, x2)→ C((x−11 ))((x2)),

which extend the ring embeddings of C[x1, x2] into C((x1))((x2)) and C((x−11 ))((x2)),
respectively.
Throughout this paper, we set

G = {αx+ β | α, β ∈ C, α �= 0} ⊂ C[x],(2.1)

which is considered as a group with respect to function composition. (Note that G
consists of all the linear transformations that preserve∞.) For g(x) = αx+β ∈ G,
we have g−1(x) = α−1x− α−1β. We have a canonical group homomorphism

Φ : G → C
×, g(x) = αx+ β �→ α.(2.2)

Let g(x) = αx+ β ∈ G. For n ∈ Z, we view g(x)n as an element of C((x−1)):

g(x)n = (αx+ β)n =
∑
i≥0

(
n

i

)
αn−iβixn−i.

It is understood that

δ

(
g(x2)
x1

)
=
∑
n∈Z

x−n
1 g(x2)n =

∑
n∈Z

∑
i≥0

(
n

i

)
αn−iβix−n

1 xn−i
2 .(2.3)

For a vector space W over C, set

Eo(W ) = Hom(W,W ((x−1))) ⊂ (EndW )[[x, x−1]].(2.4)

Vector space Eo(W ) (over C) is also naturally a module over C((x−1)). The identity
operator, denoted by 1W , is a special element of Eo(W ).
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Let a(x) =
∑

n∈Z
anx−n−1 ∈ Eo(W ) and let g(x) = αx+β ∈ G. As a convention

we define

a(g(x)) =
∑
n∈Z

an(αx+ β)−n−1 =
∑
n∈Z

∑
i≥0

(−n− 1
i

)
α−n−i−1βianx−n−i−1,

which still lies in Eo(W ).
For g ∈ G, define Lg ∈ End(Eo(W )) by

Lg(a(x)) = a(g−1(x)) for g ∈ G, a(x) ∈ Eo(W ).(2.5)

This makes Eo(W ) a (left) G-module1.

Definition 2.1. Let V be a vertex algebra. A quasi V -module at infinity is a vector
space W equipped with a linear map

YW (·, x) : V → Hom(W,W ((x−1))) ⊂ (EndW )[[x, x−1]]

v �→ YW (v, x) =
∑
n∈Z

vnx−n−1 (with vn ∈ EndW ),

satisfying the conditions that YW (1, x) = 1W (the identity operator on W ) and
that for any u, v ∈ V , there exists a nonzero polynomial p(x1, x2) such that

p(x1, x2)YW (u, x1)YW (v, x2) ∈ Hom
(
W,W ((x−11 , x−12 ))

)
(2.6)

and

(p(x1, x2)YW (u, x1)YW (v, x2)) |x1=x2+x0 = p(x0 + x2, x2)YW (Y (u, x0)v, x2).
(2.7)

Remark 2.2. Note that for A(x1, x2) ∈ Hom(W,W ((x−11 , x−12 ))) with W a vector
space,

A(x2 + x0, x2) exists in
(
Hom(W,W ((x−12 )))

)
[[x0]].

The condition (2.6) in Definition 2.1 guarantees that the expression on the left-hand
side of (2.7) exists. On the other hand, assume that (W,YW ) is a quasi module at
infinity for a vertex algebra V and let u, v ∈ V . Then (2.7) holds for any nonzero
polynomial p(x1, x2) such that (2.6) holds.

We have the following result which strengthens Lemma 5.1 of [Li6]:

Proposition 2.3. Let (W,YW ) be a quasi module at infinity for a vertex algebra
V . Then for any u, v ∈ V , there exists a nonzero polynomial p(x1, x2) such that

p(x1, x2)YW (v, x2)YW (u, x1) = p(x1, x2)YW (u, x1)YW (v, x2)(2.8)

and

x−10 δ

(
x1 − x2

x0

)
p(x1, x2)YW (v, x2)YW (u, x1)(2.9)

−x−10 δ

(
x2 − x1
−x0

)
p(x1, x2)YW (u, x1)YW (v, x2)

= x−12 δ

(
x1 − x0

x2

)
p(x1, x2)YW (Y (u, x0)v, x2).

1An action of G on Eo(W ) was defined in [Li6] by Rg(a(x)) = a(g(x)) for g ∈ G, a(x) ∈ Eo(W ).

In fact, this gives a right action instead of a left action because G is nonabelian.
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Proof. Lemma 5.1 in [Li6] asserts that there exists a nonzero polynomial p(x1, x2)
such that (2.8) holds, from which we see that (2.6) holds. From Remark 2.2, (2.7)
holds. Then (2.9) follows immediately from Lemma 4.2 therein. �
Definition 2.4. Let W be a vector space. A subset U of Eo(W ) is said to be quasi
local if for any a(x), b(x) ∈ U , there exists a nonzero polynomial p(x1, x2) such that

p(x1, x2)[a(x1), b(x2)] = 0.(2.10)

The following notion was due to [GKK]:

Definition 2.5. Let W be a vector space and let Γ be a subgroup of G. A subset
U of Eo(W ) is said to be Γ-local if for any a(x), b(x) ∈ U , (2.10) holds with p(x1, x2)
a product of x1 − g(x2) with g ∈ Γ (not necessarily multiplicity-free).

Note that the relation (2.10), which can be written as

p(x1, x2)a(x1)b(x2) = p(x1, x2)b(x2)a(x1),

implies

p(x1, x2)a(x1)b(x2) ∈ Hom
(
W,W ((x−11 , x−12 ))

)
.(2.11)

A subset U of Eo(W ) is said to be quasi compatible if for any a(x), b(x) ∈ U ,
there exists a nonzero polynomial p(x1, x2) such that (2.11) holds. Furthermore,
for a subgroup Γ of G we define Γ-compatibility correspondingly.
Now, let a(x), b(x) ∈ Eo(W ). Assume that there exists a nonzero polynomial

p(x1, x2) such that (2.11) holds. We define

a(x)nb(x) ∈ Eo(W ) for n ∈ Z

in terms of generating function

YEo(a(x), x0)b(x) =
∑
n∈Z

a(x)nb(x)x−n−1
0

by

YEo(a(x), x0)b(x) = ιx−1,x0

(
1

p(x+ x0, x)

)
(p(x1, x)a(x1)b(x)) |x1=x+x0 ,

where ιx−1,x0 : C(x, x0)→ C((x−1))((x0)) is the unique extension of the embedding
of C[x, x0] into C((x−1))((x0)).
The following result was obtained in [Li6] (Theorem 5.4):

Theorem 2.6. Let W be a vector space and let U be any quasi local subset of
Eo(W ). Then U generates a vertex algebra 〈U〉 with YEo as the vertex operator
map and with 1W as the vacuum vector, and W is a quasi module at infinity with

YW (α(x), z) = α(z) for α(x) ∈ 〈U〉.
The following was also essentially obtained in [Li6]:

Proposition 2.7. Let V be a vertex algebra and let W be a vector space equipped
with a linear map YW (·, x) : V → Hom(W,W ((x−1))) with YW (1, x) = 1W . Set

VW = {YW (v, x) | v ∈ V } ⊂ Eo(W ).

Then (W,YW ) is a quasi V -module at infinity if and only if VW is quasi local,
(VW , YEo , 1W ) carries the structure of a vertex algebra, and YW is a vertex algebra
homomorphism from V to VW .
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Proof. Assume that (W,YW ) is a quasi V -module at infinity. By Proposition 2.3,
VW is a quasi local subspace of Eo(W ). From [Li6] (the first half of the proof of
Lemma 5.9) we have

YEo(YW (u, x), x0)YW (v, x) = YW (Y (u, x0)v, x) for u, v ∈ V.(2.12)

We also have YW (1, x) = 1W . Then it follows that (VW , YEo , 1W ) carries the struc-
ture of a vertex algebra and YW is a homomorphism of vertex algebras. The other
direction is clear from Theorem 2.6. �

The following result generalizes Lemma 5.11 of [Li6]:

Lemma 2.8. Let W be a vector space and let a(x), b(x) ∈ Eo(W ). Assume

[a(x1), b(x2)] =
r∑

j=0

Aj(x2)
1
j!

(
∂

∂x2

)j

x−11 δ

(
x2
x1

)
(2.13)

+
k∑

i=1

s∑
j=0

Bij(x2)
1
j!

(
∂

∂x2

)j

x−11 δ

(
gi(x2)

x1

)
,

where Aj(x), Bij(x) ∈ Eo(W ), gi(x) ∈ G with gi(x) �= x for 1 ≤ i ≤ k. Then

a(x)jb(x) = −Aj(x) for 0 ≤ j ≤ r,

a(x)jb(x) = 0 for j > r.(2.14)

Proof. Set

q(x1, x) =
k∏

i=1

(
(x1 − x)r+1 − (gi(x)− x)r+1

)s+1 ∈ C[x1, x].

Noticing that

q(x1, x) = q̄(x1, x)
k∏

i=1

(x1 − gi(x))s+1

for some q̄(x1, x) ∈ C[x1, x] and that

(x1 − gi(x))s+1
(

∂

∂x2

)j

x−11 δ

(
gi(x2)

x1

)
= 0

for 1 ≤ i ≤ k, 0 ≤ j ≤ s, we have

q(x1, x2)
(

∂

∂x2

)j

x−11 δ

(
gi(x2)

x1

)
= 0.

Then we get

q(x1, x2)[a(x1), b(x2)] =
r∑

j=0

q(x1, x2)Aj(x2)
1
j!

(
∂

∂x2

)j

x−11 δ

(
x2
x1

)
.(2.15)

Note that (2.15) implies

(x1 − x2)r+1q(x1, x2)[a(x1), b(x2)] = 0.

From the definition of YEo we have

xr+1
0 q(x+ x0, x)YEo(a(x), x0)b(x) =

(
(x1 − x)r+1q(x1, x)a(x1)b(x)

) |x1=x+x0 .
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Combining the two identities above with Lemma 4.2 of [Li6], we obtain

x−10 δ

(
x1 − x

x0

)
(x1 − x)r+1q(x1, x)b(x)a(x1)

−x−10 δ

(
x− x1
−x0

)
(x1 − x)r+1q(x1, x)a(x1)b(x)

= x−1δ
(

x1 − x0
x

)
(x1 − x)r+1q(x1, x)YEo(a(x), x0)b(x).

Applying Resx0x
−r−1
0 to both sides, we get

−q(x1, x)[a(x1), b(x)] =
∑
i≥0

a(x)ib(x)
1
i!

q(x1, x)
(

∂

∂x

)i

x−11 δ

(
x

x1

)
,

which is a finite sum. Combining this with (2.15) we obtain∑
i≥0

(Ai(x) + a(x)ib(x))
1
i!

q(x1, x)
(

∂

∂x

)i

x−11 δ

(
x

x1

)
= 0,(2.16)

where we set Ai(x) = 0 for i > r. Notice that we have

q(x1, x) = (x1 − x)r+1P (x1, x) +Q(x),

where P (x1, x) is a polynomial and

Q(x) = (−1)k(s+1)
k∏

i=1

(gi(x)− x)(r+1)(s+1).

Since

(x1 − x)r+1
(

∂

∂x

)j

x−11 δ

(
x

x1

)
= 0 for 0 ≤ j ≤ r,

(2.16) reduces to∑
i≥0

(Ai(x) + a(x)ib(x))
1
i!

Q(x)
(

∂

∂x

)i

x−11 δ

(
x

x1

)
= 0.

From [Li1] (Lemma 2.1.4), we get

(Ai(x) + a(x)ib(x))Q(x) = 0 for i ≥ 0.

Since gi(x) �= x for 1 ≤ i ≤ k, we have Q(x) �= 0. Then our assertions follow
immediately. �

As a generalization and a corollary of Lemma 2.8 we have:

Proposition 2.9. Let W be a vector space and let a(x), b(x) ∈ Eo(W ). Assume

[a(x1), b(x2)] =
k∑

i=1

r∑
j=0

Aij(x2)
1
j!

(
∂

∂x2

)j

x−11 δ

(
gi(x2)

x1

)
,(2.17)

where Aij(x) ∈ Eo(W ) and gi(x) ∈ G distinct for 1 ≤ i ≤ k. Then

Φ(gi)a(gi(x))jb(x) = −Aij(x) for 0 ≤ j ≤ r,

Φ(gi)a(gi(x))jb(x) = 0 for j > r,(2.18)

where Φ : G → C
× was defined before by Φ(g) = α for g(x) = αx+ β ∈ G.
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Proof. Let g(x) = αx+ β ∈ G (with α ∈ C
×, β ∈ C). We have

x−11 δ

(
g(x2)
x1

)
= x−11 δ

(
αx2 + β

x1

)
= α−1x−12 δ

(
x1 − β

αx2

)
= α−1x−12 δ

(
α−1x1 − α−1β

x2

)
= Φ(g)−1x−12 δ

(
g−1(x1)

x2

)
.

Using this, from (2.17) we have

[a(g(x1)), b(x2)] =
k∑

i=1

r∑
j=0

Φ(gi)−1Aij(x2)
1
j!

(
∂

∂x2

)j

x−12 δ

(
g−1i g(x1)

x2

)
.

Taking g(x) = gi(x) with 1 ≤ i ≤ k, by Lemma 2.8 we obtain

a(gi(x))jb(x) = −Φ(gi)−1Aij(x) for 0 ≤ j ≤ r

and a(gi(x))jb(x) = 0 for j > r, as desired. �

The following technical result generalizes a result of [GKK]:

Lemma 2.10. Let W be a vector space, let

A(x1, x2) ∈ Hom
(
W,W ((x−12 ))[[x1, x−11 ]]

)
,

and let

p(x1, x2) =
r∏

i=1

(x1 − gi(x2))ki ,

where g1(x), . . . , gr(x) are distinct elements of G and k1, . . . , kr are positive integers.
Then p(x1, x2)A(x1, x2) = 0 if and only if

A(x1, x2) =
r∑

i=1

ki−1∑
j=0

Aij(x2)
(

∂

∂x2

)j

x−11 δ

(
gi(x2)

x1

)
(2.19)

for some Aij(x) ∈ Eo(W ).

Proof. The “if” part is clear. For the “only if” part, we first consider the case r = 1.
Note that for any h(x) ∈ G, A(x1, h(x2)) exists in Hom

(
W,W ((x−12 ))[[x1, x−11 ]]

)
.

Let us simply use g(x) for g1(x). We see that

(x1 − g(x2))kA(x1, x2) = 0

if and only if
(x1 − x2)kA(x1, g−1(x2)) = 0.

It was known (see [K2], [DLM]) that the latter is equivalent to

A(x1, g−1(x2)) =
k−1∑
j=0

Bj(x2)
(

∂

∂x2

)j

x−11 δ

(
x2
x1

)
(2.20)

for some Bj(x) ∈ (EndW )[[x, x−1]] . For 0 ≤ j ≤ k − 1, since

Resx1(x1 − x2)j
(

∂

∂x2

)j

x−11 δ

(
x2
x1

)
= j!,

we have
Bj(x2) =

1
j!
Resx1(x1 − x2)jA(x1, g−1(x2)).
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As A(x1, g−1(x2)) ∈ Hom
(
W,W ((x−12 ))[[x1, x−11 ]]

)
, we get Bj(x) ∈ Eo(W ). It is

clear that (2.20) is equivalent to

A(x1, x2) =
k−1∑
j=0

Bj(g(x2))Φ(g)−j

(
∂

∂x2

)j

x−11 δ

(
g(x2)
x1

)
(2.21)

under the condition that Bj(x) ∈ Eo(W ) for 0 ≤ j ≤ k − 1.
We next consider the general case. For 1 ≤ i ≤ r, set

pi(x1, x2) =
p(x1, x2)

(x1 − gi(x2))ki
∈ C[x1, x2].

Note that pi(x1, x2) with 1 ≤ i ≤ r, viewed as polynomials in x1 with coefficients
in C(x2), are relatively prime. Then there exist qi(x1, x2) ∈ C(x2)[x1] for 1 ≤ i ≤ r
such that

1 = p1(x1, x2)q1(x1, x2) + · · ·+ pk(x1, x2)qk(x1, x2).

Recall the field embedding ιx,∞ : C(x)→ C((x−1)). This gives an algebra embed-
ding of C(x2)[x1] into C((x−12 ))[x1]. Denote by q̄i(x1, x2) the image of qi(x1, x2) in
C((x−12 ))[x1]. We have

1 = p1(x1, x2)q̄1(x1, x2) + · · ·+ pk(x1, x2)q̄k(x1, x2)

in C((x−12 ))[x1], so that

A(x1, x2) =
k∑

i=1

pi(x1, x2)q̄i(x1, x2)A(x1, x2).(2.22)

Note that
(x1 − gi(x2))kipi(x1, x2)q̄i(x1, x2)A(x1, x2) = 0

and pi(x1, x2)q̄i(x1, x2)A(x1, x2) ∈ Hom
(
W,W ((x−12 ))[[x1, x−11 ]]

)
. Then it follows

immediately from (2.22) and the special case. �

The following is a variation of the notion of Γ-vertex algebra, introduced in [Li6]
(cf. [Li4])2:

Definition 2.11. Let Γ be a group. A vertex Γ-algebra is a vertex algebra V
equipped with two group homomorphisms

L : Γ→ GL(V ) and φ : Γ→ C
×,

satisfying the condition that L(g)1 = 1 for g ∈ Γ and

L(g)Y (u, x)v = Y (L(g)u, φ(g)x)L(g)v for g ∈ Γ, u, v ∈ V.(2.23)

It is clear that for any group H equipped with a homomorphism from H to Γ,
a vertex Γ-algebra V is naturally a vertex H-algebra. Define a homomorphism of
vertex Γ-algebras from U to V to be a homomorphism θ of vertex algebras such
that

θ(L(g)u) = L(g)θ(u) for g ∈ Γ, u ∈ U.

2The notion of vertex Γ-algebra here with respect to the pair (Γ, φ) amounts to the notion of
Γ-vertex algebra in [Li6] with respect to (Γ, φ−1).
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Remark 2.12. Let V be a Z-graded vertex algebra in the sense that V is a vertex
algebra equipped with a Z-grading V = ⊕n∈ZV(n) such that

ukv ∈ V(m+n−k−1) for u ∈ V(m), v ∈ V(n), m, n, k ∈ Z.

Let L(0) denote the linear operator on V , defined by

L(0)v = nv for v ∈ V(n), n ∈ Z.

Let Γ be any automorphism group of V , which preserves the Z-grading, and let
φ : Γ → C

× be any linear character. For g ∈ Γ, set L(g) = φ(g)L(0)g. Then it can
be readily seen that V becomes a vertex Γ-algebra.

The following is a modification of the same named notion introduced in [Li6]3:

Definition 2.13. Let V be a vertex Γ-algebra. A quasi V -module at infinity is a
quasi module at infinity (W,YW ) for V viewed as a vertex algebra, equipped with
a group homomorphism

Ψ : Γ→ G,

satisfying the condition that φ = Φ ◦Ψ,
YW (L(g)v, x) = YW (v,Ψ(g)−1(x)) for g ∈ Γ, v ∈ V,(2.24)

and {YW (v, x) | v ∈ V } is Ψ(Γ)-local.
Lemma 2.14. In Definition 2.13, the condition that {YW (v, x) | v ∈ V } is Ψ(Γ)-
local can be replaced with a weaker condition that for any u, v ∈ V , there exists a
product q(x1, x2) of linear polynomials x1 − g(x2) with g ∈ Ψ(Γ) such that

q(x1, x2)YW (u, x1)YW (v, x2) ∈ Hom
(
W,W ((x−11 , x−12 ))

)
.(2.25)

Proof. Let u, v ∈ V . Assume that q(x1, x2) is a product of linear polynomials
x1−g(x2) with g ∈ Ψ(Γ) such that (2.25) holds. From Proposition 2.3, there exists
a nonzero polynomial p(x1, x2) such that

p(x1, x2)YW (u, x1)YW (v, x2) = p(x1, x2)YW (v, x2)YW (u, x1).

Then

p(x1, x2) (q(x1, x2)YW (u, x1)YW (v, x2)− q(x1, x2)YW (v, x2)YW (u, x1)) = 0.

From definition, q(x1, x2)YW (v, x2)YW (u, x1) lies in Hom
(
W,W ((x−12 ))((x−11 ))

)
.

As (2.25) holds, q(x1, x2)YW (u, x1)YW (v, x2) also lies in Hom
(
W,W ((x−12 ))((x−11 ))

)
.

Consequently, (multiplying by ιx−1
2 ,x−1

1
(1/p(x1, x2))) we get

q(x1, x2)YW (u, x1)YW (v, x2) = q(x1, x2)YW (v, x2)YW (u, x1).

This proves that {YW (v, x) | v ∈ V } is Ψ(Γ)-local. �

Recall the (left) group action of G on Eo(W ). We have (cf. [Li6], Theorem
5.10)4:

3The only change from the original definition is in (2.24), to incorporate the change of the

right action R of G on Eo(W ) to the left action L.
4This is the corrected version of Theorem 5.10 in [Li6] with the right action R of Γ replaced

with the left action L.
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Theorem 2.15. Let W be a vector space, let Γ be a subgroup of G, and let U be
a Γ-local subset of Eo(W ). Then Γ · U is Γ-local and the vertex algebra 〈Γ · U〉
generated by Γ · U is a vertex Γ-algebra where φ = Φ and L is given by L(g) = Lg

for g ∈ Γ, that is

L(g)a(x) = a(g−1(x)) for g ∈ Γ, a(x) ∈ 〈Γ · U〉.
Furthermore, W is a quasi module at infinity for 〈Γ · U〉 with YW (a(x), z) = a(z)
for a(x) ∈ 〈Γ · U〉 and with Ψ = 1.

Proof. As Lg = Rg−1 on Eo(W ) for g ∈ G, Lemma 3.13 of [Li6] asserts that

LgYEo(a(x), x0)b(x) = YEo(Lga(x),Φ(g)x0)Lgb(x)

for g ∈ Γ, a(x), b(x) ∈ 〈Γ · U〉. This together with Theorem 2.6 confirms the first
assertion on the vertex Γ-algebra structure. As for the structure of a quasi module
at infinity, we have

YW (Lga(x), x0) = YW (a(g−1(x)), x0) = a(g−1(x0)) = YW (a(x), g−1(x0))

for g ∈ Γ, a(x) ∈ 〈Γ · U〉. On the other hand, it follows from Proposition 3.14
of [Li6] and induction that 〈Γ · U〉 is Γ-local. This confirms the second assertion
that W is a quasi module at infinity for 〈Γ · U〉 viewed as a vertex Γ-algebra with
YW (a(x), x0) = a(x0) for a(x) ∈ 〈Γ · U〉. �

The following refinement of Proposition 2.7 is straightforward:

Proposition 2.16. Let V be a vertex Γ-algebra, let Ψ : Γ → G be a group homo-
morphism such that Φ ◦Ψ = φ, and let W be a vector space equipped with a linear
map YW (·, x) : V → Hom(W,W ((x−1))) with YW (1, x) = 1W . Set

VW = {YW (v, x) | v ∈ V } ⊂ Eo(W ).

Then (W,YW ) is a quasi V -module at infinity if and only if VW is Ψ(Γ)-local,
(VW , YEo , 1W ) carries the structure of a vertex Ψ(Γ)-algebra, and YW : V → VW

is a homomorphism of vertex Γ-algebras, where VW is viewed as a vertex Γ-algebra
through the homomorphism Ψ : Γ→ Ψ(Γ) ⊂ G.

As the main result of this section, we have the following analog of the twisted
vertex operator commutator formula (see [FLM]):

Theorem 2.17. Let V be a vertex Γ-algebra with group homomorphisms L : Γ→
GL(V ); φ : Γ → C

×, let (W,YW ) be a quasi V -module at infinity with group
homomorphism Ψ : Γ → G, and let u, v ∈ V . Then there exist finitely many
σ1, . . . , σr ∈ Γ such that Ψ(σi) (i = 1, . . . , r) are distinct in G and

[YW (u, x1), YW (v, x2)](2.26)

= −
r∑

i=1

∑
j∈N

φ(σi)−1YW ((L(σi)u)jv, x2)
1
j!

(
∂

∂x2

)j

x−11 δ

(
Ψ(σi)−1(x2)

x1

)
.

Furthermore, if Ψ : Γ→ G is one-to-one, then

[YW (u, x1), YW (v, x2)](2.27)

= −
∑

σ∈Γ,j∈N

φ(σ)−1YW ((L(σ)u)jv, x2)
1
j!

(
∂

∂x2

)j

x−11 δ

(
Ψ(σ)−1(x2)

x1

)
,

which is a finite sum.
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Proof. From definition, there exist distinct g1(x), . . . , gr(x) ∈ Ψ(Γ) ⊂ G and posi-
tive integers k1, . . . , kr such that(

r∏
i=1

(x1 − gi(x2))ki

)
[YW (u, x1), YW (v, x2)] = 0.(2.28)

In view of Lemma 2.10, we have

[YW (u, x1), YW (v, x2)] =
r∑

i=1

ki−1∑
j=0

Aij(x2)
1
j!

(
∂

∂x2

)j

x−11 δ

(
gi(x2)

x1

)
(2.29)

for some Aij(x) ∈ Eo(W ). By Proposition 2.9, we get

Aij(x) = −Φ(gi)YW (u, gi(x))jYW (v, x),

where YW (u, gi(x)) and YW (v, x) are viewed as elements of Eo(W ). Let σ1, . . . , σr ∈
Γ such that Ψ(σi) = g−1i (x) for 1 ≤ i ≤ r. As YW (L(σi)u, x) = YW (u, gi(x)) and
Φ(gi) = Φ(Ψ(σ−1i )) = φ(σi)−1, we have

Aij(x) = −φ(σi)−1YW (L(σi)u, x)jYW (v, x).

Recall from Proposition 2.7 that

YEo(YW (a, x), x0)YW (b, x) = YW (Y (a, x0)b, x) for a, b ∈ V.(2.30)

Using this we obtain

[YW (u, x1), YW (v, x2)]

= −Resx0

r∑
i=1

Φ(gi)YEo (YW (L(σi)u, x2), x0)YW (v, x2)e
x0

∂
∂x2 x−11 δ

(
gi(x2)

x1

)

= −Resx0

r∑
i=1

φ(σi)−1YW

(
Y (L(σi)u,Φ(gi)−1x0)v, x2

)
ex0

∂
∂x2 x−11 δ

(
gi(x2)

x1

)

= −Resx0

r∑
i=1

φ(σi)−1YW (Y (L(σi)u, φ(σi)x0)v, x2) e
x0

∂
∂x2 x−11 δ

(
gi(x2)

x1

)
,

as desired.
Suppose Ψ is one-to-one. Let σ ∈ Γ with σ �= σi for 1 ≤ i ≤ r. Set g(x) =

Ψ(σ−1) ∈ G. Then g(x) �= gi(x) for 1 ≤ i ≤ r. Combining (2.29) with Proposition
2.9, we have

YW (u, g(x))jYW (v, x) = 0 for j ≥ 0,

i.e.,
YEo (YW (u, g(x)), x0)YW (v, x) ∈ Eo(W )[[x0]].

Using Proposition 2.7 we have

YW (Y (L(σ)u, x0)v, x) = YEo (YW (L(σ)u, x), x0)YW (v, x)
= YEo (YW (u, g(x)), x0)YW (v, x).

Consequently, YW (Y (L(σ)u, x0)v, x) involves only nonnegative powers of x0. Thus

Resx0YW (Y (L(σ)u, x0)v, x2)e
x0

∂
∂x2 x−11 δ

(
g(x2)
x1

)
= 0.

Then the second assertion follows immediately. �
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The following technical result is a modification of Lemma 5.9 in [Li6] with a
slightly different proof:

Lemma 2.18. Let V be a vertex Γ-algebra, let Ψ : Γ → G be a group homomor-
phism with Φ ◦Ψ = φ, and let (W,YW ) be a quasi module at infinity for V viewed
as a vertex algebra. Assume that UW = {YW (u, x) | u ∈ U} is Ψ(Γ)-local and

YW (L(g)u, x) = YW (u,Ψ(g)−1(x)) for g ∈ Γ, u ∈ U,

where U is a Γ-submodule which generates V as a vertex algebra. Then (W,YW ) is
a quasi V -module at infinity.

Proof. From assumption, UW is a Ψ(Γ)-local subset of Eo(W ). For g ∈ Γ, u ∈ U ,
we have

YW (L(g)u, x) = YW (u,Ψ(g)−1(x)) = LΨ(g) (YW (u, x)) .(2.31)

It follows that UW is stable under the subgroup Ψ(Γ) of G. By Theorem 2.15,
we have a vertex Ψ(Γ)-algebra 〈UW 〉 with W as a quasi module at infinity. Since
(W,YW ) is a module at infinity for V viewed as a vertex algebra, in view of Propo-
sition 2.7, YW is a homomorphism of vertex algebras from V to 〈UW 〉.
Suppose that

YW (L(g)u, x) = YW (u,Ψ(g)−1(x)) and YW (L(g)v, x) = YW (v,Ψ(g)−1(x))

for some g ∈ Γ, u, v ∈ V . Then we have

YW (L(g)Y (u, x0)v, x)
= YW (Y (L(g)u, φ(g)x0)L(g)v, x)
= YEo (YW (L(g)u, x), φ(g)x0)YW (L(g)v, x)
= YEo

(
YW (u,Ψ(g)−1(x)), φ(g)x0

)
YW (v,Ψ(g)−1(x))

= LΨ(g)YEo (YW (u, x), x0)YW (v, x)
= LΨ(g)YW (Y (u, x0)v, x)

= YW (Y (u, x0)v,Ψ(g)−1(x)).

As U generates V as a vertex algebra, it follows from (2.31) that

YW (L(g)v, x) = LΨ(g) (YW (v, x)) for all g ∈ Γ, v ∈ V.

That is, YW is a homomorphism of vertex Γ-algebras. By Proposition 2.16, (W,YW )
is a quasi V -module at infinity. �

3. Lie algebra ĝ(∞)[Γ] and vertex algebra Vĝ(
, 0)

In this section, we recall from [Li6] the Lie algebra ĝ(∞)[Γ] and the main results
on the relation between ĝ(∞)[Γ] and vertex algebra Vĝ(
, 0), including Theorem
5.14, and as our main result we establish the converse of this theorem.
Let g be a (possibly infinite-dimensional) Lie algebra equipped with a non-

degenerate symmetric invariant bilinear form 〈·, ·〉. Associated to the pair (g, 〈·, ·〉),
one has an (untwisted) affine Lie algebra

ĝ = g⊗ C[t, t−1]⊕ Ck,

where k is central and

[a⊗ tm, b⊗ tn] = [a, b]⊗ tm+n +mδm+n,0〈a, b〉k
13



for a, b ∈ g, m, n ∈ Z. Defining deg(g⊗ tm) = −m for m ∈ Z and degk = 0 makes
ĝ a Z-graded Lie algebra. For a ∈ g, form a generating function

a(x) =
∑
n∈Z

(a⊗ tn)x−n−1.

Let 
 be a complex number. Denote by C� the 1-dimensional (g ⊗ C[t] ⊕ Ck)-
module with g⊗C[t] acting trivially and with k acting as scalar 
. Form the induced
ĝ-module

Vĝ(
, 0) = U(ĝ)⊗U(g⊗C[t]⊕Ck) C�.(3.1)

Set 1 = 1⊗ 1 and then identify g as a subspace of Vĝ(
, 0) through the linear map
a → a(−1)1. It is well known (cf. [FZ]) that there exists a unique vertex-algebra
structure on Vĝ(
, 0) with 1 as the vacuum vector and with Y (a, x) = a(x) for
a ∈ g. Defining deg 1 = 0 makes Vĝ(
, 0) a Z-graded ĝ-module and the vertex
algebra Vĝ(
, 0) equipped with this Z-grading is a Z-graded vertex algebra.
Let Γ be a subgroup of Aut(g, 〈·, ·〉), consisting of automorphisms of g that

preserve 〈·, ·〉. Each g ∈ Γ lifts canonically to an automorphism of the Z-graded Lie
algebra ĝ, and then to an automorphism of the Z-graded vertex algebra Vĝ(
, 0).
In this way, Γ acts on vertex algebra Vĝ(
, 0) by automorphisms that preserve the
Z-grading. Let φ : Γ→ C

× be any group homomorphism. For g ∈ Γ, set
L(g) = φ(g)L(0)g ∈ GL(Vĝ(
, 0)),

where L(0) denotes the linear operator on Vĝ(
, 0) defined by L(0)v = nv for v ∈
Vĝ(
, 0)(n) with n ∈ Z. This defines a vertex Γ-algebra structure on Vĝ(
, 0).
Consider the following completion of affine Lie algebra ĝ:

ĝ(∞) = g⊗ C((t−1))⊕ Ck,(3.2)

where

[a⊗ p(t), b⊗ q(t)] = [a, b]⊗ p(t)q(t) + Restp′(t)q(t)〈a, b〉k(3.3)

for a, b ∈ g, p(t), q(t) ∈ C((t−1)).
The following is a construction of a family of new Lie algebras by using Lie

algebra ĝ(∞) (cf. [Li6], Proposition 5.12; [GKK])5:

Proposition 3.1. Let g be a Lie algebra equipped with a non-degenerate symmet-
ric invariant bilinear form 〈·, ·〉 and let Γ be an automorphism group of (g, 〈·, ·〉),
satisfying the condition that for any u, v ∈ g,

[gu, v] = 0 and 〈gu, v〉 = 0 for all but finitely many g ∈ Γ.

Let Ψ : Γ → G be a group homomorphism and set g(x) = Ψ(g)(x) ∈ G for g ∈ Γ.
Define a new bilinear multiplicative operation [·, ·]Γ on vector space ĝ(∞) = g ⊗
C((t−1))⊕ Ck by

[a⊗ p(t),k]Γ = 0 = [k, a⊗ p(t)]Γ,

[a⊗ p(t), b⊗ q(t)]Γ =
∑
g∈Γ

[ga, b]⊗ p(g−1(t))q(t) + Restq(t)
d

dt
p(g−1(t))〈ga, b〉k

5This is the corrected version of Proposition 5.12 in [Li6]. In the original proof, an action of Γ
on ĝ(∞) was defined by

g(a ⊗ p(t) + λk) = ga ⊗ p(g(t)) + λk

for g ∈ Γ, a ∈ g, p(t) ∈ C((t−1)), λ ∈ C, which is not a left action if Ψ(Γ) is not abelian.
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for a, b ∈ g, p(t), q(t) ∈ C((t−1)). Then the subspace, linearly spanned by vectors

ga⊗ p(t)− a⊗ p(g(t))

for g ∈ Γ, a ∈ g, p(t) ∈ C((t−1)), is a two-sided ideal of the non-associative algebra,
and the quotient algebra, which we denote by ĝ(∞)[Γ], is a Lie algebra.

Proof. For g ∈ Γ, a ∈ g, p(t) ∈ C((t−1)), λ ∈ C, define

g(a⊗ p(t) + λk) = ga⊗ p(g−1(t)) + λk.

It is straightforward to show that Γ acts on ĝ(∞) by automorphisms, satisfying the
condition that for any u, v ∈ ĝ(∞),

[gu, v] = 0 for all but finitely many g ∈ Γ.

Then it follows immediately from [Li5] (Lemma 4.1). �

Let

π : ĝ(∞)→ ĝ(∞)[Γ]

denote the natural linear map. For a ∈ g, set

aΓ(x) =
∑
n∈Z

π(a⊗ tn)x−n−1 ∈ (ĝ(∞)[Γ]) [[x, x−1]].(3.4)

Define a linear character φ : Γ→ C
× by

φ(g) =
d

dx
Ψ(g)(x) for g ∈ Γ.

We say that a ĝ(∞)[Γ]-module W is of level 
 ∈ C if k acts on W as scalar 
.
The following is a modification of Lemma 5.13 in [Li6]:

Lemma 3.2. Let W be a vector space and let 
 ∈ C. Then a ĝ(∞)[Γ]-module
structure of level 
 on W amounts to a linear map

θ : g→ Eo(W ); a �→ aW (x),

satisfying the conditions that

(ga)W (x) = φ(g)−1aW (g−1(x))(3.5)

for g ∈ Γ, a ∈ g and that

[aW (x1), bW (x2)](3.6)

=
∑
g∈Γ

[ga, b]W (x2)x−11 δ

(
g−1(x2)

x1

)
+ 
〈ga, b〉 ∂

∂x2
x−11 δ

(
g−1(x2)

x1

)
for a, b ∈ g.

Proof. Let g(x) = αx + β ∈ G with α ∈ C
×, β ∈ C. Then g−1(x) = α−1(x − β)

and

x−1δ
(

g(t)
x

)
= x−1δ

(
αt+ β

x

)
= α−1t−1δ

(
x− β

αt

)
= α−1t−1δ

(
g−1(x)

t

)
.
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Using this we get

(ga)Γ(x) =
∑
n∈Z

π(ga⊗ tn)x−n−1 =
∑
n∈Z

π(a⊗ g(t)n)x−n−1

= π

(
a⊗ x−1δ

(
g(t)
x

))
= φ(g)−1π

(
a⊗ t−1δ

(
g−1(x)

t

))
= φ(g)−1aΓ(g−1(x)),

proving (3.5). As for (3.6), notice that∑
m,n∈Z

g−1(t)mtnx−m−1
1 x−n−1

2 = x−11 δ

(
g−1(t)

x1

)
x−12 δ

(
t

x2

)

= x−11 δ

(
g−1(x2)

x1

)
x−12 δ

(
t

x2

)
and

Rest
∑

m,n∈Z

tn
d

dt
g−1(t)mx−m−1

1 x−n−1
2

= −Rest
∑

m,n∈Z

ntn−1g−1(t)mx−m−1
1 x−n−1

2

= Rest
∂

∂x2
x−11 δ

(
g−1(t)

x1

)
t−1δ

(x2
t

)
=

∂

∂x2
x−11 δ

(
g−1(x2)

x1

)
.

Then (3.6) follows from the construction of ĝ(∞)[Γ]. �
We have (cf. [Li6], Theorem 5.14)6:

Theorem 3.3. Let 
 ∈ C and let W be any ĝ(∞)[Γ]-module of level 
 such that
aΓ(x) ∈ Eo(W ) for a ∈ g. Then there exists a unique structure of a quasi module at
infinity on W for the vertex Γ-algebra Vĝo(−
, 0) with YW (a, x) = aΓ(x) for a ∈ g,
where go denotes the opposite Lie algebra of g.

Proof. Set
U = {aΓ(x) | a ∈ g} ⊂ Eo(W ).

For a, b ∈ g, there exist g1, . . . , gr ∈ Γ such that [ga, b] = 0 and 〈ga, b〉 = 0 for
g /∈ {g1, . . . , gr}. It follows from (3.6) that

(x1 − g−11 (x2))2 · · · (x1 − g−1r (x2))2[aΓ(x1), bΓ(x2)] = 0.

Thus U is a Γ-local subspace of Eo(W ). From (3.5), Γ · U = U . By Theorem 2.15,
U generates a vertex Γ-algebra 〈U〉 with W as a quasi module-at-infinity where
YW (α(x), x0) = α(x0) for α(x) ∈ 〈U〉. Combining (3.6) with Lemma 2.8 we get
aΓ(x)0bΓ(x) = −[a, b]Γ(x), aΓ(x)1bΓ(x) = −
〈a, b〉1W , and aΓ(x)nbΓ(x) = 0

for n ≥ 2. In view of the universal property of Vĝo(−
, 0) (cf. [Li5]), there exists a
vertex-algebra homomorphism from Vĝo(−
, 0) to 〈U〉, sending a to aΓ(x) for a ∈ g.

6This is a corrected version of Theorem 5.14 in [Li6] with a complete proof.
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Consequently, W is a quasi module-at-infinity for Vĝo(−
, 0) viewed as a vertex
algebra. Furthermore, for g ∈ Γ, a ∈ g we have

YW (L(g)a, x) = YW (φ(g)L(0)ga, x) = φ(g)(ga)Γ(x) = aΓ(g−1(x)) = YW (a, g−1(x)).

As g generates Vĝo(−
, 0) as a vertex algebra, it follows from Lemma 2.18 that W

is a quasi module-at-infinity for Vĝo(−
, 0) viewed as a vertex Γ-algebra. �

Furthermore, we have the following converse of Theorem 3.3:

Theorem 3.4. Let (W,YW ) be any quasi module at infinity for the vertex Γ-algebra
Vĝo(−
, 0) such that the associated homomorphism Ψ : Γ→ G is one-to-one. Then
W is a module for Lie algebra ĝ(∞)[Γ] of level 
 with aΓ(x) = YW (a, x) for a ∈ g.

Proof. Note that for u, v ∈ g ⊂ Vĝo(−
, 0), we have

u0v = −[u, v], u1v = −
〈u, v〉1, and uiv = 0 for i ≥ 2.

Let a, b ∈ g. Using Theorem 2.17 and the facts above we get

[YW (a, x1), YW (b, x2)]

= −
∑
g∈Γ

YW ([ga, b], x2)x−11 δ

(
g−1(x2)

x1

)
+ 
〈ga, b〉 ∂

∂x2
x−11 δ

(
g−1(x2)

x1

)
,

noticing that L(g) = φ(g)L(0)g and L(0)a = a. On the other hand, we have

YW (ga, x) = φ(g)−1YW (L(g)a, x) = φ(g)−1YW (a, g−1(x)) for g ∈ Γ, a ∈ g.

It then follows from Lemma 3.2 that W is a module for ĝ(∞)[Γ] of level 
 with
aΓ(x) = YW (a, x) for a ∈ g. �
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