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Abstract

We show that a generic SL(2, R) valued cocycle in the class of Cr, (0 < r < 1) cocycles based
on a rotation flow on the d-torus, is either uniformly hyperbolic or has zero Lyapunov exponents
provided that the components of winding vector γ̄ = (γ1, · · ·, γd) of the rotation flow are rationally
independent and satisfy the following super Liouvillian condition :

|γi −
pi

n

qn

| ≤ Ce−q1+δ

n , 1 ≤ i ≤ d , n ∈ N ,

where C > 0 and δ > 0 are some constants and pi
n , qn are some sequences of integers with qn → ∞.
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1 Notation, Basic facts and Statement of the Main Result

R. Mane conjectured that a generic volume preserving C1 diffeomorphism of a compact, connected C∞

surface is either Anosov or its Lyapunov exponents are zero at almost all points. A first step towards
resolving this conjecture is to prove its linearized version-namely a generic SL(2, R) valued C0 cocycle
is either uniformly hyperbolic or its Lyapunov exponents are zero at almost all points. In the context
of cocycles based on flows (rather than discrete dyamical systems), a result of this sort first appeared
in the work of R. Fabbri and R. Johnson (cf. [4]) when the base flow is the irrational winding flow on a
d torus. This result describes generic behaviour of a Cr, (0 < r < 1) cocycle, however it is also generic
in terms of the choice of the winding vector of the base rotation flow. In this paper we shall improve
this result by fixing the base winding vector. We shall impose a ‘super Liouville type’ condition on
the base winding vector. In fact we prove such a result in a ‘much thinner’ class of cocycles arising
as a fundamental matrix solution to linear differential systems of special form. More precisely, linear
differential systems satisfying a ASP (‘admissible spectral parameter’) property. In particular it can be
applied to the class of Schrödinger cocycles.

Some historical remarks are in order. A few years ago, in the setting of discrete dynamical systems
J. Bochi proved the above cocycle genericity result for general base transformations in the C0 category,
(cf. [1]). This work subsequently led J. Bochi and M. Viana to prove Mane’s conjecture (cf. [2]).
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As mentioned in their work, this result is not valid in the category of C1 cocycles for general base
transformations, for example linear automorphisms of the two torus. We do not know whether such a
generic result holds in C1 category when the base flow is a minimal rotation flow.

Even though the results of Bochi-Viana and Fabbri-Johnson have the same flavour, the techniques
employed are completely different. Fabbri-Johnson heavily use properties of the ‘rotation number’ of a
cocycle. On the other hand, the Bochi-Viana argument is based on ‘switching the stable and unstable
directions’ of the underlying invariant subbundles. We now begin with basic definitions, facts and the
notation.

Definition 1.1 A flow (Ω, {Tt}t∈R) consists of a compact metric space Ω and a one parameter group
{Tt}t∈R of homeomorphisms of Ω such that the action (ω, t) → Tt(ω) ∈ Ω is jointly continuous. If Ω is
a C∞ manifold and the action is jointly Ck, (k ∈ N), then the flow is said to be a Ck flow.

Example 1.2 Our prime example of a flow is the rotation flow on the d-torus-T d. We shall think of
Ω = T d as the unit cube whose opposite faces are identified. If γ̄ , ξ̄ ∈ Ω, the metric | | on Ω is given by
setting |γ̄ − ξ̄| = max1≤i≤d |γ

i − ξi|, where γi and ξi are the respective ith components. The flow on Ω
is given by the rule

T γ̄
t (x1, · · ·, xd) = (x1 + γ1t, · · ·, xd + γdt) , (1.1)

where γ̄ = (γ1, · · ·, γd) ∈ R
d is the winding vector of the flow.

First we shall recall basic definitions and facts. Given a rotation flow (Ω, {T γ̄
t }t∈R), let 0 ≤ r < 1 and

consider the space Cr(Ω, sl(2, R)) of Cr functions from Ω to SL(2, R). We recall that A ∈ Cr(Ω, sl(2, R))
if and only if ||A||r-the Cr norm of A-is finite. The Cr norm is defined by setting

||A||r = ||A||0 + supω 6=η

||A(ω) − A(η)||

|ω − η|r
,

where | | is the metric on the torus defined before, where the norm on sl(2, R) is the usual operator
norm, where the metric on R

2 is the standard Euclidean one, and where || ||0 denotes the supremum
norm on C0(Ω, sl(2, R)).

Given a function A ∈ Cr(Ω, sl(2, R)), consider the family of linear differential equations parametrized
by points of Ω:

x′ = A(T γ̄
t ω)x, x ∈ R

2, ω ∈ Ω . (1.2)

For each ω ∈ Ω, let t → X γ̄
A(ω, t) be the fundamental matrix solution of the equation (1.2) satisfying

x(0) = I-the 2 × 2 identity matrix. Then the map X γ̄
A : Ω × R → SL(2, R) is a cocycle, i.e. it is

continuous and satisfies the following cocycle identity:

X γ̄
A(ω, t + s) = X γ̄

A(Tt(ω), s)X γ̄
A(ω, t) for all ω ∈ Ω, t, s ∈ R . (1.3)

Lyapunov exponents and Exponential dichotomy

Next, we recall the definition of the (largest) Lyapunov exponent of a cocycle.

Definition 1.3 Let X γ̄
A : Ω × R → SL(2, R) be a cocycle. Let

β(X γ̄
A) = lim

t→∞

1

t
ln||X γ̄

A(ω, t)|| .

The Oseledets multiplicative ergodic theorem guarantees the existence of this limit a.e. ω with respect to
the Lebesgue measure µ on Ω.
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Another way to capture the logarithmic growth rate of the solutions is through the notion of uniform
hyperbolicity (or exponential dichotomy).

Definition 1.4 A cocycle X γ̄
A : Ω × R → SL(2, R) is said to have an exponential dichotomy (ED) if

there are constants C , ρ > 0 and a continuous projection valued map P : Ω → Proj (R2) : ω → Pω such
that

||X γ̄
A(ω, t)PωX γ̄

A(ω, s)−1|| ≤ Ce−ρ(t−s) if t ≥ s , (1.4)

||X γ̄
A(ω, t)(I − Pω)X γ̄

A(ω, s)−1|| ≤ Ceρ(t−s) if t ≤ s . (1.5)

The set Σ(A) defined by

Σ(A) = {λ ∈ R | the cocycle e−λtX γ̄
A(ω, t) does not admit an ED},

is called the dichotomy spectrum of the cocycle X γ̄
A.

For the rotation flow whose winding vector has rationally independent components, there are exactly
three possibilities described in the following proposition (cf. [8]).

Proposition 1.5 For a minimal rotation flow (or more generally for any minimal uniquely ergodic
flow), given a cocycle XA into SL(2, R), the dichotomy spectrum Σ(A) is either a singleton set {0} or a
two point set {−β(XA) , β(XA)} or the interval [−β(XA) , β(XA)]. The first case is equivalent to saying
that the cocycle XA admits an ED, and the second case holds exactly when β(XA) = 0-which we shall
refer to as the zero exponent case.

The dichotomy property is closely related to the spectral properties of certain differential operators.
This relation results with an introduction of a ‘spectral parameter’ λ. This is done as follows: given
A ∈ C0(Ω, sl(2, R)), consider the system

x′ = [A(T γ̄
t ω) + λJ ]x , (1.6)

where J =
(

0 −1
1 0

)

and λ ∈ R or more generally in C. The system generates the cocycle X γ̄
A+λJ . Also

consider the following AKNS operator Lω associated with A,

Lω = J−1
[d

dt
− A(T γ̄

t ω)
]

.

This is viewed as an unbounded self-adjoint operator on the Hilbert space L2(R, C2) of square integrable
C2-valued functions on R. The following proposition describes the resolvent of this operator in terms
of the notion of ED, (cf. [6]).

Proposition 1.6 A complex number λ is in the resolvent of Lω if and only if the cocycle X γ̄
A+λJ admits

ED.

Property ASP

We want to study the generic behaviour of cocycles arising from differential systems of a special
form (for example those arising from the Schrödinger equation). The ‘special form’ of the equation is
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a constraint which we shall capture by restricting the function A : Ω → sl(2, R) to take values in a
preassigned subset S ⊆ sl(2, R). It turns out that if S has certain properties then the crucial ‘rotation
number argument’, (described in the next section) can be carried out in the class Cr(Ω, S) of S valued
functions instead of the much bigger class Cr(Ω, sl(2, R)). In the following definition we abstract the
features of S we need to do this.

Definition 1.7 A subset S ⊆ sl(2, R) has the property ASP (‘admissible spectral parameter’ property)
if it is compact, convex, non-singleton and VS ∩ {A ∈ sl(2, R) | det(A) > 0} 6= ∅, where VS is the linear
subspace of sl(2, R) spanned by S.

It is easy to verify that, in the following examples, the set S has ASP.

Example 1.8 (Schrödinger system) Fix λ ∈ R and let S ≡ Sλ = {
(

0 1
r − λ 0

)

| r ∈ F}, where F ⊂ R

is a closed convex, non-singleton subset of R. Then it is easy to verify that VS = {
(

0 1
µ 0

)

| µ ∈ R} and

S has ASP.

Example 1.9 (Bylov - Vinograd system) Let F ⊂ R is a closed convex, non-singleton subset of R. Set,

S = {
(

0 1 − r
1 + r 0

)

| r ∈ F}. Again, it is easy to verify that S has ASP.

Statement of the Theorem

Now we shall state the main theorem precisely.

Theorem 1.10 Consider the rotation flow (Ω, {T γ̄
t }t∈R) on the d-torus Ω, where the winding vector

γ̄ = (γ1, · · ·, γd) satisfies the following (super Liouville) condition : the components of γ̄ are rationally
independent and satisfy the following super Liouvillian condition :

|γ̄ − γ̄n| ≤ Ce−q1+δ
n , n ∈ N , (1.7)

where C > 0 and δ > 0 are some constants and γ̄n = (p1
n

qn
, · · ·, pd

n

qn
) for sequences {pi

n}, (1 ≤ i ≤ d), {qn}
in N and qn → ∞. Let S ⊆ sl(2, R) be a subset with property ASP. Let 0 < r < 1. Consider the set

CM (S) = {A ∈ Cr(Ω, S) | either X γ̄
A is uniformly hyperbolic or λ(X γ̄

A) = 0} .

Then CM is residual in Cr(Ω, S).

2 The Rotation Number Argument

In this section we give a brief introduction of the rotation number of a cocycle, state its basic properties
and describe the ‘rotation number argument’ which proves Proposition (2.4). This proposition plays a
crucial role in our proof. The flow (Ω, {T γ̄

t }t∈R) is the rotation flow on the d torus with rotation vector
γ. Consider the family

x′ = A(T γ̄
t (ω))x , ω ∈ Ω , t ∈ R ,
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where A =
(

d −b + c
b + c −d

)

and b, c, d are continuous real valued functions of ω. Introducing the usual

polar co-ordinates (r, θ), the above linear equation can be written as

r′ =
[

d(T γ̄
t ω)cos(2θ) + c(T γ̄

t (ω)sin(2θ)
]

r (2.1)

θ′ = b(T γ̄
t ω) + c(T γ̄

t ω)cos(2θ) − d(T γ̄
t ω)sin(2θ) . (2.2)

Note that the θ equation does not depend on r.

Definition 2.1 The rotation number α ≡ α(ω, γ̄, A) of the above family is defined by setting

α = lim
t→∞

θ(t)

t
,

where θ(t) is a solution of the θ equation with arbitrary initial condition θ(0) = θ0.

We list the basic properties of α, (cf. [6] and [7]) for details).

Rotation Number : Continuity Properties

(1) The above limit exists and is independent of the initial condition θ0. Furthermore, if the flow is
minimal it is independent of ω.
(2) For each fixed γ̄ ∈ R

d the map (ω,A) → α(ω, γ̄, A) : Ω × C0(Ω, sl(2, R)) → R is continuous.
(3) If γ̄ has rationally independant components and if γ̄n ∈ R

d is such that γ̄n → γ̄, then α(ω, γ̄n, A) →
α(ω, γ̄, A) where the convergence is uniform on compact subsets of Ω × C0(Ω, sl(2, R)).

Rotation Number : Spectral Properties

(4) The following theorem relates rotation number of a cocycle to the spectrum of the associated AKNS
operator.

Theorem 2.2 Let A0 ∈ C0(Ω, sl(2, R)) and suppose γ̄ has rationally independent components. Suppose
that the cocycle X γ̄

A+λJ generated by the system (1.6) does not admit ED for all λ ∈ I, where I ⊂ R is
some open interval containing 0. Then the map λ → α(ω, γ̄, A0 + λJ) is strictly increasing.

(5) We shall also need the following fact about periodic AKNS operators.

Proposition 2.3 Suppose the flow (Ω, {T γ̄
t }t∈R) is periodic with period T > 0. Let A ∈ C0(Ω, sl(2, R)).

(I) Suppose I ⊂ R is an open interval such that if λ ∈ I then X γ̄
A+λJ does not admit ED on the orbit

closure of some ω ∈ Ω. Then the map λ → α(ω, γ̄, A + λJ) is analytic.
(II) Suppose for some ω ∈ Ω and λ ∈ R, α(ω, γ̄, A+λJ) = 2πm

T
for some integer m. Then λ is either (i)

in the closure of a resolvent interval or (ii) λ is a ‘closed gap’. In this last case, tr(X γ̄
A+λJ(ω, T )) = 2

because the rotation number is an even multiple of π
T
.

We say that λ ∈ R is a closed gap for the operator Lω = J−1
[

d
dt

− A(T γ̄
t ω)

]

if the rotation number

α(ω, γ̄, A + λJ) = πk
T

for some integer k and if λ is in the interior of the spectrum of Lω. Now we shall
state the crucial result we need.
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Proposition 2.4 Let A0 ∈ C0(Ω, sl(2, R)). Suppose γ̄ has rationally independent components and fix
a sequence γ̄n → γ̄ so that the flow (Ω, {T γ̄n

t }t∈R) is periodic with period qn and qn → ∞. Suppose that
for some η > 0, the cocycle X γ̄

A does not admit ED for any A such that ||A − A0||r < η.
(I) Then given any ε > 0, there exists some n1 ∈ N such that for each n ≥ n1 there exists a function
An ∈ Cr(Ω, sl(2, R)) such that

(1) ||A − An||r < ε and

(2) tr
(

X γ̄n

An
(ω, qn)

)

= 2, for all ω ∈ Ω.

(II) Furthermore, if A0 ∈ Cr(Ω, S), where S ⊂ sl(2, R) has ASP, then the functions An can be selected
to be in Cr(Ω, S).

Proof: (I) We only sketch the argument, for complete details see (cf. [4]) and (cf. [5]). From the
hypothesis it follows that there is some finite, open interval I ⊂ R containing zero such that if λ ∈ I then
the cocycle X γ̄

A0+λJ does not admit ED, (and without loss of generality, we shall let |I| < ε). Hence the
function λ → α(ω, γ̄, A0+λJ) is strictly increasing on I. Since (i) as n → ∞, α(ω, γ̄n, A0) → α(ω, γ̄, A0),
uniformly on Ω × Ī, and (ii) for each n ∈ N the map λ → α(ω, γ̄n, A0 + λJ) is continuous (uniformly
in ω ∈ Ω), we can find some n1 ∈ N with the following property : for each n ≥ n1, and for any ω ∈ Ω
there is some integer ℓ, (which depends on n and ω) such that

(
2π(ℓ − 1)

qn
,
2π(ℓ + 1)

qn
) ⊆ {α(ω, γ̄n, A0 + λJ) | λ ∈ I} .

Fix any n ≥ n1. Then for each ω ∈ Ω let λn(ω) be the smallest value of λ such that α(ω, γ̄n, A0 +λJ) =
2πℓ
qn

. Using monotonicity of α in λ one can check that the map ω → λn(ω) : Ω → I is well defined and

continuous. Since |I| < ε, letting An = A0+λn(ω)J , we get ||An−A||0 < ε. Since {T γ̄n

t }t∈R is a periodic
flow with period qn and α(ω, γ̄n, An) = 2πℓ

qn
, it follows (from Proposition (2.3)) that tr

(

X γ̄n

An
(ω, qn)

)

= 2,

for all ω ∈ Ω. This proves the first part of above proposion in the ‘C0 category’. To prove the same in
Cr category requires more effort. In the following we sketch this argument.

To establish regularity (i.e. ‘smoothness properties’) of the map ω → λn(ω) obtained above, we
need to construct it more carefully. First, if necessary, replacing A0 by a close enough C1 function, we
shall assume that A0 is C1. As before, fix any n ≥ n1. For each ω ∈ Ω, define the interval In,ω ⊂ I by
setting

In,ω = {λ ∈ I | α(ω, γ̄n, A0 + λJ) ∈ (
2π(ℓ − 1

2 )

qn
,
2πℓ

qn
)} .

Note that In,ω is non-degenerate and the map λ → α(ω, γ̄n, A0 + λJ) is analytic on it and is C1 in ω.

Hence by the implicit function theorem for each b ∈ (
2π(ℓ− 1

2
)

qn
, 2πℓ

qn
) the equation α(ω, γ̄n, A0 + λJ) = b

has a unique solution λb(ω), which is C1 in ω. Note that λb(ω) → λn(ω) as b increases to 2πℓ
qn

, where
λn(·) is the map obtained in the first paragraph. Let Ab = A0 + λb(ω)J . Our desired function An is
then the limit (-pointwise in ω-) of Ab as b increases to 2πℓ

qn
. It is in the process of taking this limit, that

C1 smoothness of λb is lost.
Now the key step is to get a uniform bound on the Lipschitz constants of the maps λb, where

b ∈ (
2π(ℓ− 1

2
)

qn
, 2πℓ

qn
). We shall show that Lip(λb) ≤ ||A0||1. Assuming this, we complete the proof as

follows. This estimate clearly implies that Lip(λn) ≤ ||A0||1. Now for each 0 ≤ r < 1 one has

||λn||r ≤ ||λn||0(1 + (Lip(λn))r21−r) .
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Since the Lipschitz constants of λn’s are uniformly bounded above by ||A0||1, above estimate shows
that ||λn||r can be made as small as desired by making sure that ||λn||0 is small enough. If we pick
|I| < ε

1+||A0||r12
1−r , then An = A0 + λn is a Cr function with ||An − A0||r < ε and the proof of the

proposition is complete.

Regularity of λb-an argument based on J. Moser’s computation

Now we sketch the proof of the estimate Lip(λb) ≤ ||A0||1. Recall that for each b ∈ (
2π(ℓ− 1

2
)

qn
, 2πℓ

qn
),

the functions λb : Ω → R were obtained as solutions to the equation

α(ω, γ̄n, A0 + λb(ω)J) = b .

Differentiating this relation with respect to components of ω = (ω1, · · ·, ωd) yields

0 =
∂α

∂ωj
+

∂α

∂λ

∂λb

∂ωj
.

Thus to control ∂λb

∂ωj
, we need to control ∂α

∂ωj
and ∂α

∂λ
. First we describe how, for periodic AKNS operators

these partial derivatives are related to partial derivatives of its ‘discriminant function’.
We describe this relation in a more general context. Let T > 0 be given and let CT denote the space

of continuous T -periodic sl(2, R) valued functions on R. Given a ∈ CT , let Xa : R → SL(2, R) denote
the fundamental matrix solution to the equation x′ = a(t)x with initial condition x(0) = I-the identity
matrix. Define the discriminant functional ∆̂ : CT → R by setting

∆̂(a) = tr(Xa(T )) .

J. Moser’s computation refers to the computation of the Frechet derivative of ∆̂ at a point a ∈ CT

with the property that Xa(T ) is conjugate to a rotation matrix. The relation of this to our regularity
problem goes as follows.

Consider the periodic flow (Ω, {T γ̄n

t }t∈R) with period T = qn, (recall that n ≥ n1 is fixed). Given
ω ∈ Ω and A ∈ C1(Ω, sl(2, R)), set aω,A = A(T γ̄n

t ω), then aω,A ∈ CT . Now fix A0 ∈ C1(Ω, sl(2, R)) and
define ∆ : Ω × R → R by setting

∆(ω, λ) = ∆̂(aω,A0+λJ) .

Let ΣA0
be the spectrum of the AKNS operator Lω = J−1

[

d
dt
−A0(Ttω)

]

on Cqn . Since b ∈ (
2π(ℓ− 1

2
)

qn
, 2πℓ

qn
),

λb(ω) is an interior point of ΣA0
. Hence, (using the spectral theory of periodic AKNS operators),

Xaω,A0+λJ
(qn) is conjugate to the rotation matrix

(

cos(qnα) −sin(qnα)
sin(qnα) cos(qnα)

)

, where α ≡ α(ω, γ̄n, A0+λJ).

This yields the following relation between α and ∆,

∆(ω, λ) = 2cos(qnα(ω, γ̄n, A0 + λJ)) .

Thus
∂α

∂λ
=

−1

2qnsin (qnα)

∂∆

∂λ
, and

∂α

∂ωj
=

−1

2qnsin (qnα)

∂∆

∂ωj
.

Thus, we can compute ∂λb

∂ωj
in terms of partial derivatives of ∆(ω, λ). Now note that these partial

derivatives of ∆ can be computed if we write down the Frechet derivative of ∆̂ at the point aω,A0+λJ .
This Moser - type computation (cf. [9]) is the content of the following lemma.
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Lemma 2.5 Consider a basis of sl(2, R) given by matrices

J1 =
(

0 −1
1 0

)

, J2 =
(

1 0
0 −1

)

, J3 =
(

0 1
0 0

)

.

So any function a ∈ CT will be written as a(t) =
3
∑

1=1
ai(t)Ji. Let a∗ ∈ CT so that Xa∗(T ) is conjugate

to the rotation matrix corresponding to angle Tα. Then Da∗(∆̂)(a)-the directional derivative (in the
direction a) of ∆̂ : CT → R at a-is given by

Da∗(∆̂)(a) = −sin(αT )

∫ T

0

(

3
∑

i=1

Ki(s)ai(s)
)

ds ,

where Ki : R → R are functions such that for any t ∈ [0, T ], (i) 0 < K1(t) and (ii) |Ki(t)| ≤ K1(t),
i = 2, 3.

A sketch of the proof : We follow [4], (pp. 366-367) but take the opportunity to correct a minor error
in that presentation. First one shows that

Da∗(∆̂)(a) = tr
(

Xa∗(T )

∫ T

0
Xa∗(s)−1a(s)Xa∗(s)ds

)

.

Next, one writes Xa∗(T ) = Q−1RT Q, where

RT =

(

cos(Tα) −sin(Tα)
sin(Tα) cos(Tα)

)

and Q =
(

q11 q12
q21 q22

)

are matrices in SL(2, R). One also writes Xa∗(t) =

(

u1(t) u2(t)
v1(t) v2(t)

)

. For each i = 1, 2, 3 one has

tr
(

Xa∗(T )Xa∗(t)−1JiXa∗(t)
)

= tr
(

Q−1RT QXa∗(t)−1JiXa∗(t)Q−1Q
)

= tr
(

RT QXa∗(t)−1JiXa∗(t)Q−1
)

= tr
(

RT BJiB
−1

)

,

where B = QXa∗(t)−1. Now set B =
(

b11 b12
b21 b22

)

and check that tr
(

RT BJiB
−1

)

= −sin(αT )Ki(t),

where

K1(t) = b2
11 + b2

12 + b2
21 + b2

22 ,

K2(t) = 2b11b12 + 2b21b22 ,

K3(t) = −b2
11 − b2

21 .

It follows that K1(t) > 0, |K2(t)| ≤ K1(t) and |K3(t)| ≤ K1(t) for all t ∈ [0, T ]. One has the following
explicit formula :

K1(t) = (u2
1 + v2

1)(q
2
12 + q2

22) + (u2
2 + v2

2)(q
2
11 + q2

21) − 2(q11q12 + q21q22)(u1u2 + v1v2) .

With this lemma and the above discussion one can show (cf. [4]) that

∂λb

∂ωj
=

−
3
∑

i=1

∫ T

0 Ki(t)
∂Ai

0

∂ωj
(T γ̄

t (ω))dt

∫ T

0 K1(t)dt
.
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Now the properties of Ki’s lead to the estimate | ∂λb

∂ωj
| ≤ ||A0||1.

(II) We recall the hypotheses : A0 ∈ Cr(Ω, S), S has ASP and X γ̄
A does not admit ED for any A ∈

Cr(Ω, S) with ||A − A0||r < η. Since S is non-singleton and convex, S0-the relative interior of S as a
subset of VS-is non-empty, (recall that VS is the subspace of sl(2, R) generated by S). Thus, if necessary,
replacing A0 by another S valued function that is Cr close to it, without loss of generality we can assume
that A0 is C1 and takes values in S0. Since the image A0(Ω) is a compact subset of S0 ⊂ VS , there exists
a (Euclidean) ball B centered at the zero vector of the vector space VS such that A0(ω) + v ∈ S0 ⊂ S,
for all v ∈ B and ω ∈ Ω. Since S has ASP, B contains a matrix in sl(2, R) with determinant-say µ,
(µ > 0). Such a matrix must be of the form µP−1JP , for some non-singular real matrix P , (where J is
as before). Thus there is some open interval I containing 0 such that A0 + λµP−1JP ∈ S for all λ ∈ I.
In other words there is a ρ > 0 such that A0 + λP−1JP ∈ S, for all |λ| < ρ.

Now if ||Ã − PA0P
−1||r < η

||P || ||P−1||
, then ||P−1ÃP − A0||r < η. Hence by the hypothesis P−1ÃP

does not admit ED. Thus, Ã does not admit ED. Now apply part (I) of this Proposition to the function
PA0P

−1 with ε replaced by min{ρ , ε
||P || ||P−1||

}. Thus, there exists n1 ∈ N and a sequence of functions

Ãn, (n ≥ n1) such that (i) ||Ãn − PA0P
−1|| < ε

||P || ||P−1||
and (ii) tr(X γ̄n

Ãn
(ω, qn)) = 2 for all ω ∈ Ω.

It follows from the proof of part (I) that each Ãn is of the form Ãn = PA0P
−1 + λn(ω)J . Take

An = P−1ÃnP , then

||An − A0|| ≤ ||P || ||P−1
(

Ãn − PA0P
−1

)

P || ||P−1|| < ε and

tr(X γ̄
An

(ω, qn)) = tr(P−1X γ̄

Ãn
(ω, qn)P ) = tr(X γ̄

Ãn
(ω, qn)) = 2 .

Finally we need to show that each An is S valued. Note that An(ω) = P−1ÃnP = A0+λn(ω)P−1JP ∈ S
for all ω ∈ Ω, because we have made sure that |λn(ω)| < ρ. This concludes the proof.

3 The proof of Theorem (1.10)

Proof: For each k ∈ N consider the set

V (k) = {A ∈ Cr(Ω, S) | X γ̄
A is not uniformly hyperbolic and λ(X γ̄

A) ≥
1

k
} .

Since S is closed, the upper semi-continuity of the Lyapunov exponent implies that V (k) is a closed
set. We will show that each V (k) has empty interior. This will imply that ∪k∈NV (k) is a set of first
category. Then the proof follows from the Baire Category theorem since CM ⊂ Cr(Ω, S) \ ∪k∈NV (k).

So let us suppose that for some k ∈ N, V (k) has non empty interior. This k will be fixed here
onwards. Observe that

λ(X γ̄
A) = lim

t→∞

1

t

∫

Ω
ln ||X γ̄

A(ω, t)||dω = inft>0 {
1

t

∫

Ω
ln ||X γ̄

A(ω, t)||dω} ,

where we have used the subadditivity of the map t →
∫

Ω ln ||X γ̄
A(ω, t)||dω. Thus if A ∈ V (k), then

∫

Ω ln ||X γ̄
A(ω, t)||dω ≥ 1

k
for all t ≥ 0. Our assumption implies that there is some A0 ∈ V (k) and some

η > 0 such that Bη(A0) ≡ {B ∈ Cr(Ω, S) | ||B − A0||r < η} ⊆ V (k). Without loss of generality, we
shall let η < ||A0||r. Thus,

||B||0 ≤ ||B||r ≤ 2||A0||r , if B ∈ Bη(A0) .
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In the following, we shall construct a function B ∈ Bη(A0) such that B /∈ V (k). This contradiction will
complete the proof.

Step (1) : (The Rotation Number argument) : Since X γ̄
A does not admit ED for any A ∈ Bη(A0), we

can apply Proposition (2.4) with ε = η
2 and with γ̄n = (p1

n

qn
, · · ·, pd

n

qn
) (-the sequence in the definition of

the super Liouville condition). In this way we get n1 ∈ N and a sequence of functions An ∈ Cr(Ω, S)
such that

(1) ||A − An||r < η
2 and

(2) tr
(

X γ̄n

An
(ω, qn)

)

= 2, for all ω ∈ Ω.

Step (2) : (Gronwall’s Inequality) Let B ∈ Bη(A0). Our choice of η implies that ||B||0 ≤ 2||A0||r.

Let ξ̄ ∈ [0, 1]d be any winding vector. Note that x(t) = X ξ̄
B(ω, t)x0 satisfies the integral equation

x(t) = x0 +
∫ t

0 B(T ξ̄
s ω)x(s)ds. Hence the estimate ||x(t)|| ≤ ||x0||+

∫ t

0 ||B(T ξ̄
s ω)|| ||x(s)||ds allows one to

apply Gronwall’s inequality which yields the estimate ||X ξ̄
B(ω, t)x0|| ≤ ||x0||e

||B||0t ≤ ||x0||e
2||A0||rt for

any t > 0. Taking the supremum over all ||x0||’s of norm one yields

||X ξ̄
B(ω, t)|| ≤ e2||A0||rt . (3.1)

Next we compare the solutions xγ̄(t) ≡ X γ̄
B(ω, t)x0 and xγ̄n(t) ≡ X γ̄n

B (ω, t)x0, where B ∈ Bη(A0) and
x0 is any vector of unit norm. Again, using the integral representation we have

xγ̄(t) − xγ̄n(t) =

∫ t

0
B(T γ̄

s ω)xγ̄(s)ds −

∫ t

0
B(T γ̄n

s ω)xγ̄n(s)ds .

Thus,

||xγ̄(t) − xγ̄n(t)|| ≤

∫ t

0
||B(T γ̄

s ω) − B(T γ̄n
s ω)|| ||xγ̄(s)||ds +

∫ t

0
||B(T γ̄n

s ω)|| ||xγ̄(s) − xγ̄n(s)||ds .

Now note that for any s ∈ [0, T ] we have

supω∈Ω||B(T γ̄
s ω) − B(T γ̄n

s ω)|| ≤ ||B||r supω∈Ω|T
γ̄
s (ω) − T γ̄n

s (ω)|r

≤ 2||A0||r
∣

∣γ̄ − γ̄n

∣

∣

r
sr , (since ||B||r ≤ 2||A0||r) .

Next, note that the estimate (3.1) gives

||xγ̄(s)|| = ||X γ̄
B(ω, s)x0|| ≤ e2||A||rs||x0|| = e2||A||rs .

Thus, for any t ∈ [0, T ] we have

||xγ̄(t) − xγ̄n(t)|| ≤ 2||A0||r
∣

∣γ̄ − γ̄n

∣

∣

r
∫ t

0
sre2||A0||rsds +

∫ t

0
||B||r ||x

γ̄(s) − xγ̄n(s)||ds (3.2)

We note that sr ≤ 1 if s ∈ [0, 1] and sr < s if s > 1. Hence if t ≥ 1, we have
∫ t

0
sre2||A0||rsds ≤

∫ 1

0
e2||A0||rsds +

∫ t

1
se2||A0||rsds

≤
t

2||A0||r
e2||A0||rt −

∫ t

1

e2||A0||rs

2||A0||r
ds

≤
t

2||A0||r
e2||A0||rt .
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Thus, for t ≥ 1 we have the estimate

||xγ̄(t) − xγ̄n(t)|| ≤ 2||A0||r
∣

∣γ̄ − γ̄n

∣

∣

r t

2||A0||r
e2||A0||rt + 2

∫ t

0
||A0||r ||x

γ̄(s) − xγ̄n(s)||ds . (3.3)

Thus Gronwall’s inequality implies that if t ∈ [1, T ] then

||xγ̄(t) − xγ̄n(t)|| ≤
∣

∣γ̄ − γ̄n

∣

∣

r
Te2||A0||rT e2||A0||rt .

Taking the supremum over all x0’s with unit norm yields: if t ∈ [1, T ] and ω ∈ Ω then

||X γ̄
B(ω, t) − X γ̄n

B (ω, t)|| ≤
∣

∣γ̄ − γ̄n

∣

∣

r
Te4||A0||rT . (3.4)

Step (3) : Going back to Step (1), recall that tr(X γ̄n

An
(ω, qn)) = 2 for all ω ∈ Ω and for each n ≥ n1.

Now we recall a general fact : if g ∈ SL(2, R) is a matrix such that tr(g) = 2 then g can be written as

g = R(φ)
(

1 µ
0 1

)

R(φ)−1 ,

for some φ ∈ [0, π) and µ ∈ R, where R(φ) =
(

cosφ sinφ
−sinφ cosφ

)

. To see this, note that the characteristic

equation of g is λ2 − 2λ + 1 = 0 and g has a unique eigenvalue 1 with algebraic multiplicity 2. Let

v =

(

cos(φ)
sin(φ)

)

be an eigenvector of g of standard Euclidean norm 1, and let w =

(

−sin(φ)
cos(φ)

)

be a unit

vector orthogonal to v. Since (g − I)2 = 0, gw − w is an eigenvector of g. Thus gw − w = µv for some
µ ∈ R. This shows that g has above representation.

Hence, for each n ∈ N and ω ∈ Ω there exist µn(ω) ∈ R and φn(ω) ∈ [0, π] such that

X γ̄n

An
(ω, qn) = R(φn(ω))

(

1 µn(ω)
0 1

)

R(φn(ω))−1 ,

where R(φn(ω)) is the rotation matrix described above. We claim that

|µn(ω)| ≤ e2||A0||rqn , for each n ∈ N and ω ∈ Ω . (3.5)

This follows at once from inequality (3.1) and the fact |µn(ω)| ≤
√

1 + |µn(ω)|2 = ||X γ̄n

An
(ω, qn)

(

0
1

)

||.

Step (4) : Let C1 be a constant such that ||g|| ≤ C1||g||∞ for all g ∈ sl(2, R), where || || and || ||∞ are
the uniform (i.e. operator) norm and the supremum norm on the set of matrices respectively, (without

loss of generality let C1 > 1). Thus, for any matrix g ∈ sl(2, R) of the form g =
(

1 ν
0 1

)

, we have

ln ||g|| ≤ Max {ln (C1) , ln (C1|ν|)} .

(Note that the if |ν| ≤ 1 then ||g||∞ = 1, else it is |ν|). In particular, since for any n ∈ N the flow
{T

γn
t }t∈R is periodic, for any ℓ ∈ N and ω ∈ Ω, we have

ln ||X γ̄n

An
(ω, ℓqn)|| = ln ||X γ̄n

An
(ω, qn)ℓ|| ≤ Max {ln (C1) , ln (C1|ℓµn(ω)|)} .

Now select m ∈ N such that

Max {
ln (C1)

m
,
ln (C1m)

m
+

2||A0||r
m

} <
1

4k
. (3.6)
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Hence for any n ∈ N and ω ∈ Ω

1

mqn
ln ||X γ̄n

An
(ω,mqn)|| ≤ Max {

ln C1

mqn
,
ln (C1m|µn(ω)|)

mqn
}

≤ Max {
ln C1

m
,
ln (C1m|µn(ω)|)

mqn
} since qn ≥ 1 ,

≤ Max {
ln C1

m
,
ln (C1me2||A0||r

m
) , (by (3.5))

≤ Max {
ln C1

m
,
ln (C1m)

m
+

2||A0||r
m

}

≤
1

4k
, by (3.6) . (3.7)

Step (5) : Now select n2 ∈ N such that if n > n2 then

Cr e4||A0||mqn

erq1+δ
n

<
1

4k
. (3.8)

Fix any n ≥ Max{N,n1, n2} and consider An. Clearly, ||An − A0|| < η. We show that An /∈ V (k).
Consider

1

mqn
ln ||X γ̄

An
(ω,mqn)|| =

1

mqn

(

ln ||X γ̄
An

(ω,mqn)|| − ln ||X γ̄n

An
(ω,mqn)||

)

+
1

mqn
ln ||X γ̄n

An
(ω,mqn)||

≤
1

mqn

(

||X γ̄
An

(ω,mqn) − X γ̄n

An
(ω,mqn)||

)

+
1

4k
, by (3.7) . (3.9)

Here we have used the fact that (i) |ln(x) − ln(y)| ≤ |x − y| if x, y ≥ 1 and (ii) if g ∈ SL(2, R) then
||g|| ≥ 1. Now using the estimate (3.4) with t = mqn we get

1

mqn
||X γ̄

An
(ω,mqn) − X γ̄n

An
(ω,mqn)|| ≤

1

mqn

∣

∣γ̄ − γ̄n

∣

∣

r
mqne4||A0||rmqn ≤

Cre4||A0||rmqn

erq1+δ
n

≤
1

4k
, by (3.8) .

This shows that
1

mqn
ln ||X γ̄

An
(ω,mqn)|| <

1

2k
.

This means An /∈ V (k) and the proof is complete.

Remark 3.1 From the proof it follows that in the appropriate hypotheses of the main theorem, the
‘super Liouville condition’ can be replaced by the following weaker condition:

|γ̄ − γ̄n| ≤ Ce−f(n)qn , 1 ≤ i ≤ d ,

where C is a constant and f : N → [0,∞) is a function such that lim
n→∞

f(n) = ∞.
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