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Abstract

Consider the class of Cr-smooth SL(2,R) valued cocycles, based on the rotation flow on the
two torus with irrational rotation number α. We show that in this class, (i) cocycles with positive
Lyapunov exponents are dense and (ii) cocycles that are either uniformly hyperbolic or proximal are
generic, if α satisfies the following Liouville type condition:
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1 Introduction

This note is regarding a quantitative refinement of a ‘rotation number argument’ originally due to
Russell Johnson (cf. [13]), also see [5],[6], [7]) for SL(2,R) valued cocycles. We shall demonstrate the
application of this refined argument by proving (i) the density of smooth cocycles with positive Lyapunov
exponents and (ii) genericity of smooth cocycles that are either uniformly hyperbolic or proximal, where
the underlying flow is the irrational rotation flow with a ‘super Liouvillian’ rotation number.

First, we shall discuss a bit of history of such results. In the discrete setting, density of SL(2,R)
valued cocycles with positive exponents was first proved by O. Knill in the category of measurable
cocycles, (cf. [18], also cf. [8]). Knill’s proof uses ‘the Herman trick’ yielding a lower bound on the
exponent. For R actions (i.e. in the context of cocycles that are fundamental matrix solutions to a
linear differential equations), such a density result was proved by R. Johnson in the continuous category,
(cf. [12] and also [22]). R. Johnson’s argument is based on a result of S. Kotani, (cf. [19]).

For the irrational rotation flow on the 2-torus, with a generic choice of the irrational rotation number,
R. Johnson (cf. [12]) and later R. Fabbri and R. Johnson (cf. [6]), proved a density result for cocycles
with positive exponents in the continuous and smooth category of cocycles respectively. As mentioned
before, these proofs are based on the work of Kotani along with certain properties of ‘the rotation
number’ of a cocycle. It is this result we want to refine by fixing the rotation number of the base flow
and imposing a certain ‘Liouville type’ condition on it.

Regarding proximality, generic proximal behaviour was established (using the so called ‘conjugacy
approximation tehnique’) in the very restrictive class of ‘closures of smooth coboundaries’, (see [21]). An
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existence result using the same technique but in the continuous category was proved in ([10]). However
the class of ‘closures of coboundaries’ is too special and rather unnatural in the context of cocycles
arising as the fundamental matrix solutions of linear differential systems. In the class of all cocycles
proximal cocycles are not even dense, because the uniformly hyperbolic cocycles are never proximal and
uniformly hyperbolic cocycles form an open set. Thus our result is the first such result and in fact it has
the flavour similar to ‘Mane’s cojucture’ - a linearized version of which was proved by J. Bochi (see [2]).
The result of Bochi says (in the discrete setting) that a generic continous cocycle is either uniformly
hyperbolic or has zero exponents. Our result is a kind of ‘topological dynamic’ analogue where the
condition of zero exponents is replaced by proximality. However, there are certain differences between
the condition of proximality and that of zero exponents. For example, our proximality result is in the
class of Cr, (r ∈ N), cocycles but it is not known whether J. Bochi’s result is true in the smooth (even
C1) category. We mention that in a recent joint work with R. Johnson ([15]) we proved such a result
in the class of Hölder cocycles. Comparing techniques, the one used for the ‘proximality result’ needs a
suitable perturbation only on a piece of a single orbit, whereas for the ‘zero exponents result’ the desired
perturbation has to have a (measure theoretically) large support. On the other hand, for obtaining
proximality and positive exponents by small perturbation, first one gets a suitable perturbation by
the ‘rotation number argument’ and then needs to modify it further using quantitative perturbation
results, (such as Propositions (2.6) and (3.1)) and an ‘open mapping type result’, (Proposition (2.7)).
For obtaining zero exponents the perturbation obtained by the ‘rotation number argument’ suffices and
does not need any additional modifications, ([15]).

In passing we also mention other more recent results regarding density of cocycles with positive
exponents in the smooth category. These results are in the discrete setting and are based on techniques
completely different than those mentioned above. First, the work of R. Krikorian on reducibility of
SL(2,R) valued cocycles, (see [17]), yields such a result when the base transformation is a circle rotation
where the rotation number satisfies a stronger than Diophantine condition, (a ‘recurrent diophantine
condition’). More recently this result is generalized in [9]. A recent result of A. Avila, ([1]), proves
density of smooth SL(2,R) valued cocycles with positive exponents without any assumption on the
base rotation number other than irrationality. This is based on refining, (the discrete version of), S.
Kotani’s theorem. Yet another recent result of M. Viana establishes density in the smooth category
when the base transformation is an Anosov diffeomorphism, ([23]). As mentioned above, all these results
are in the discrete setting where one deals with the space of cocycles directly, (in contrast our method
deals with the space of their ‘infinitisimal generators’).

Now we comment on our approach and technique. As mentioned in the begining, we develop a
quantitative version of R. Johnson’s argument and use S. Kotani’s result to reduce the problem to
constructing smooth unbounded cocycles. To show that smooth unbounded cocycles are generic, we
need to develop two key quantitative results (Proposition (2.6) and Proposition (2.7)). The first of these
is a quantitative statement about perturbing a parabolic matrix and the second is a ‘quantitative open
mapping theorem’. For the proximality result, we need to develop another suitable quantitative result,
(Proposition (3.1)). For simplicity the paper is written for the irrational rotation flow on the two torus,
but the arguments can be generalized to more general flows. The extension to irrational rotation flows
on n torus, (with appropriate super Liouville condition), is more or less direct and one can abstract our
method to extend these results to flows on manifolds admiting ‘fast periodic approximation’ and having
some additional ‘geometric structure’.

Before we formally begin by introducing basic definitions, I wish to dedicate this paper to Professor
Russell Johnson in celebrating his 60th. I truely cherish our friendship over the past twenty five years
or more. It was his early work that introduced me to applying abstract theory of dynamical systems to
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the qualitative theory of non-autonomous linear systems.

Definition 1.1 A flow (Ω, {Tt}t∈R) consists of a compact metric space Ω and a one parameter group
{Tt}t∈R of homeomorphisms of Ω such that the action (ω, t) → Tt(ω) ∈ Ω is jointly continuous. If Ω is
a C∞ manifold and the action is jointly Ck, (k ∈ N), then the flow is said to be a Ck flow.

Example 1.2 Our prime example of a flow is the rotation flow on the 2-torus-T 2. We shall think of
Ω = T 2 as the unit square [0, 1]× [0, 1] whose opposite end points are identified. The flow on Ω is given
by the rule

T γ
t (ω) = T γ

t (x, y) = (x+ γt, y + t), ω = (x, y) ∈ [0, 1] × [0, 1] , t ∈ R , (1.1)

where γ ∈ R is the rotation number of the flow.

First we shall recall the basic definitions and facts regarding a general Cr flow (Ω, {Tt}t∈R). Let A :
Ω :→ gl(2,R) be a given Cr function. Consider the family of linear differential equations parametrized
by points of Ω:

x′ = A(Ttω)x, x ∈ R2, ω ∈ Ω . (1.2)

For each ω ∈ Ω, let t → XA(ω, t) be the fundamental matrix solution of the equation (1.2) satisfying
XA(ω, 0) = I-the 2 × 2 identity matrix. Then the map XA : Ω × R → GL(2,R) is a cocycle, i.e. it is
continuous and satisfies the following cocycle identity:

XA(ω, t+ s) = XA(Tt(ω), s)XA(ω, t) for all ω ∈ Ω, t, s ∈ R . (1.3)

Note that if A : Ω :→ sl(2,R), then XA : Ω × R → SL(2,R).

Let P denote the projective 1-space. A cocycle XA defines a skew product flow on the projective
bundle P × Ω given by the action

TA
t ([v] , ω) = ([XA(ω, t)v] , Tt(ω)), ([v] , ω) ∈ P × Ω , t ∈ R , (1.4)

where [v] denotes the ray through a non-zero vector v ∈ R2. Thus, the flow (P × Ω, {TA
t }t∈R) defines a

dynamical extension of the flow (Ω , {Tt}t∈R) via the factor map π([v], ω) = ω.

Definition 1.3 A cocycle XA is proximal if the factor map π defines a proximal extension. This means
that for any ω ∈ Ω, if ([v1], ω) , ([v2] , ω)) are any two distinct points in P × Ω, in the fiber over ω, then
there exists a sequence tn ∈ R such that |tn| → ∞ and d

(

TA
tn([v1] , ω) , TA

tn ([v2] , ω)
)

→ 0, where d is any
metric generating the product topology on P × Ω.

Lyapunov exponents and Exponential dichotomy

Next, we recall the definition of the (largest) Lyapunov exponent of a cocycle.

Definition 1.4 Let XA : Ω × R → GL(2,R) be a cocycle. Let

β(XA) = lim
t→∞

1

t
ln||XA(ω, t)|| .

Given an invariant measure on the flow (Ω, {Tt}t∈R), the Oseledets multiplicative ergodic theorem guar-
antees the existence of this limit a.e. ω with respect to that measure on Ω.
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Another way to capture the logarithmic growth rate of the solutions is through the notion of uniform
hyperbolicity (or exponential dichotomy).

Definition 1.5 A cocycle XA : Ω × R → GL(2,R) is said to have an exponential dichotomy (ED) if
there are constants K , ρ > 0 and a continuous projection valued map P̂ : Ω → Proj (R2) : ω → P̂ω such
that

||XA(ω, t)P̂ωXA(ω, s)−1|| ≤ Ke−ρ(t−s) if t ≥ s , (1.5)

||XA(ω, t)(I − P̂ω)XA(ω, s)−1|| ≤ Keρ(t−s) if t ≤ s . (1.6)

The set Σ(A) defined by

Σ(A) = {λ ∈ R | the cocycle e−λtXA(ω, t) does not admit an ED},

is called the dichotomy spectrum of the cocycle XA.

For a cocycle XA : Ω×R → SL(2,R) when the base flow is the rotation flow with irrational winding
vector, (or more generally, any uniquely ergodic flow), there are exactly three possibilities described in
the following proposition (cf. [16]).

Proposition 1.6 For any minimal uniquely ergodic flow, given a cocycle XA into SL(2,R), the di-
chotomy spectrum Σ(A) is either a singleton set {0} or a two point set {−β(XA) , β(XA)} or the interval
[−β(XA) , β(XA)].

The first case is equivalent to saying β(XA) = 0-which we shall refer to as the zero exponent case.
In the second case the cocycle XA is said to be uniformly hyperbolic. It is exactly the case when XA

admits an exponential dichotomy. We also remark that a cocycle cannot be both, proximal and uniformly
hyperbolic. In the third case the cocycle is said to be non-uniformly hyperbolic.

In the rest of the paper, whenever our base flow is the rotation flow on the 2-torus with winding
number γ and A : Ω → sl(2,R) is a given map, the cocycle XA generated by A will be denoted by Xγ

A.
The dependance of the cocycle on γ will be very crucial in our arguments. Now we state our results.

Theorem 1.7 Let (Ω, {Tt}t∈R) be the irrational rotation flow on the 2-torus with winding number α.
Let r ∈ N. Suppose α satisfies the following super Liouvillian condition :

|α− αn| ≤ Ce−qr+1+κ
n , n ∈ N , (1.7)

where C > 0 and 0 < κ < 1 are some constants and αn = pn

qn
∈ Q, where pn , qn ∈ N, (pn, qn) = 1, and

qn → ∞. Fix any ω∗ ∈ Ω. Let

Cr
unb = {A ∈ Cr(Ω, sl(2,R)) | the set {Xα

A(ω∗, t) | t > 0} is unbounded in SL(2,R)} .

Then Cr
unb is residual (in particular dense) in Cr(Ω, sl(2,R)).

Theorem 1.8 Let (Ω, {Tt}t∈R) be as in the above theorem. Then the set

Cr
pos = {A ∈ Cr(Ω, sl(2,R)) | β(Xα

A) > 0}

is dense in Cr(Ω, sl(2,R)).
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Theorem 1.9 Let (Ω, {Tt}t∈R) be as in the above theorem. Then the set

Cr
prox,uh = {A ∈ Cr(Ω, sl(2,R)) | Xα

A is either uniformly hyperbolic or proximal} ,

is residual in Cr(Ω, sl(2,R)).

First we show that the proof of Theorem (1.8) can be reduced to that of Theorem (1.7) by R.
Johnson’s argument which is based on a generalization of a theorem of S. Kotani. To discuss Kotani’s
theorem, consider a linear differential system based on a general uniquely ergodic flow (Ω, {Tt}t∈R).
One introduces a ‘spectral parameter’ λ ∈ C into the linear system by considering

x′ = [A(Ttω) + λJ ]x, x ∈ Rn, ω ∈ Ω , (1.8)

where J =
(

0 1
−1 0

)

. Let XA+λJ denote the cocycle generated by the above differential system. The

largest Lyapunov exponent β(λ) ≡ β(XA+λJ ) of the system (1.8) is a function of λ. The following is a
generalization of a result of S. Kotani (cf. [3]).

Theorem 1.10 Consider the system (1.8) with A ∈ C(Ω, sl(2,R)), based on a minimal uniquely ergodic
flow (Ω, {Tt}t∈R, µ). Let I be an open interval containing 0. Suppose β(λ) ≡ β(XA+λJ) = 0 for almost
all λ ∈ I with respect to the Lebesgue measure. Then there exists a compact set K ⊂ SL(2,R) such that

XA(ω, t) ∈ K , for all t ∈ R and for all ω ∈ Ω .

Proof of Theorem (1.8)
Proof: Fix a sequence (Kn)n∈N of compact subsets of SL(2,R) such that Kn ⊂ (Kn+1)

0, for n ∈ N

and SL(2,R) = ∪n∈NKn. For contradiction, suppose there is an open set V ⊂ Cr(Ω, sl(2,R)) such that
for each B ∈ V , the Lyapunov exponent β(Xα

B) = 0. Let B0 ∈ V and consider the family of equations

x′ = [B0(T
α
t (ω) + λJ ]x , x ∈ R2 . (1.9)

Since B0 is in the interior of V , there exists an interval I ⊂ R containing 0 such that for λ ∈ I the Cr

function B0 + λJ belongs to V . Hence,

β(λ) ≡ β(Xα
B0+λJ) = 0 for all λ ∈ I .

Hence by Theorem (1.10)
Xα

B0
(ω, t) ∈ Km , for all (ω, t) ∈ Ω × R ,

for some m ∈ N.
Next, recall that ω∗ ∈ Ω is some fixed point. For n ∈ N, set

Wn = {B ∈ V ⊆ Cr(Ω, sl(2,R)) | Xα
B(ω∗, t) ∈ Kn, for all t ∈ R} .

Since B0 in the above argument was an arbitrary point in V , it follows that

V ⊆ ∪n∈NWn .

Since each Wn is a closed subset of the Baire space Cr(Ω, sl(2,R)), there is some n0 ∈ N for which the
set Wn0

contains a non-empty open subset of V . This contradicts the density of the set Cr
unb(Ω, sl(2,R))

of unbounded cocycles guaranteed by Theorem (1.7).

Now we proceed to the proofs of our main theorems, Theorem (1.7) and Theorem (1.9).
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2 Proof of Theorem (1.7)

If g is 2×2 matrix, ||g|| will denote its uniform (i.e. operator) norm, (where the underlying vector space
R2 carries the standard Euclidean norm). For convinience, we shall take ω∗ to be ω∗ = (0, 0) ∈ Ω, the
proof does not depend on which ω∗ is selected. For each N ∈ N, set

E(N) = {A ∈ Cr(Ω, sl(2,R)) | ||Xα
A(ω∗, t)|| > N for some t > 0} .

Clearly E(N) is open in Cr(Ω, sl(2,R)), this is a consequence of continuous dependence of solutions
on the vector field. More precisely, it follows from the continuity of the map A → Xα

A(ω∗, r) :
C0(Ω, sl(2,R)) → SL(2,R). We shall show that E(N) is also dense in Cr(Ω, sl(2,R)). The proof
then follows from the Baire Category Theorem by considering the set ∩N∈NE(N).

Suppose E(N) is not dense in Cr(Ω, sl(2,R)). This means there exists

(1) a function A0 ∈ Cr(Ω, sl(2,R)) and

(2) an ε0 > 0 such that

(3) if ||A−A0||r < ε0 then ||Xα
A(ω∗, t)|| ≤ N for all t ∈ [0,∞).

We shall construct a function B ∈ Cr(Ω, sl(2,R)) such that
(i) ||B −A0||r < ε0, and
(ii) B ∈ E(N), that is, there is some t > 0 such that ||Xα

B(ω∗, t)|| > N . This will contradict the
hypothesis and prove the density of E(N).

Remark 2.1 (A general comment about the proof) Construction of such a function B in the
class C0(Ω, sl(2,R)) of continuous cocycles is much easier (cf. [12] and [22]). To construct such
a function in the smooth category, following R. Johnson, we need to first employ certain arguments
involving the ‘rotation number’ of the cocycle (cf. [13], [6] and [7]). Once this is done, our quantitative
refinement of R. Johnson’s argument begins. This refinement is based on two key results, Lemma (2.6)
and Proposition (2.7) and then followed by an application of the Gronwall’s inequality, (Lemma (2.8)).

Thus proofs of both Theorem (1.7) and Theorem (1.9) have four ingradients : (A) A rotation number
argument, (B) a quantitative result about perturbation of a parabolic matrix, (C) a quantitative open
mapping theorem and (D) Gronwall’s inequality. For Theorem (1.9) we need to suitably modify ‘ingra-
dients’ (B) and (D) but the overall strategy is the same. The key observation common to both proofs is
the following : Suppose A is a map such that no map close enough to A generates a uniformly hyperbolic
cocycle. Then one can find an arbitrarily small perturbation B of A so that Xα

B(ω∗, t) can be approxi-
mated by parabolic matrices, for large values of t, of the form t = mqn, where qn is the nth convergent
of α and m is an appropriate positive integer which admits a crucial ‘apriory upper estimate’.

We begin by describing the ‘rotation number argument’, followed by precise statements of the two
key results and a version of Gronwall inequality. The construction of the function B can only begin
after these preliminaries because choices of various constants to be made in this construction depend on
various parameters appearing in the statements of the two key propositions.

A : The rotation number argument

In this section we give a brief introduction of the rotation number of a cocycle, state its basic
properties and describe the ‘rotation number argument’ which proves Proposition (2.5). This proposition
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plays a crucial role in our proof. The flow (Ω, {T γ
t }t∈R) is the rotation flow on the d torus with rotation

number γ. Consider the family

x′ = A(T γ
t (ω))x , ω ∈ Ω , t ∈ R ,

where A =
(

d −b+ c
b+ c −d

)

and b, c, d are continuous real valued functions of ω. Introducing the usual

polar co-ordinates (r, θ), the above linear equation can be written as

r′ =
[

d(T γ
t ω)cos(2θ) + c(T γ

t ω)sin(2θ)
]

r

θ′ = b(T γ
t ω) + c(T γ

t ω)cos(2θ) − d(T γ
t ω)sin(2θ)

Note that the θ equation does not depend on r.

Definition 2.2 The rotation number ρ ≡ ρ(ω, γ,A) of the above family is defined by setting

ρ = lim
t→∞

θ(t)

t
,

where θ(t) is a solution of the θ equation with arbitrary initial condition θ(0) = θ0.

We list the basic properties of α, (cf. [11] and [14]) for details).

Rotation Number : Continuity Properties

(1) The above limit exists and is independent of the initial condition θ0. Furthermore, if the flow is
minimal it is independent of ω.
(2) For each fixed γ ∈ R the map (ω,A) → ρ(ω, γ,A) continuous.
(3) If γ /∈ Q and if γn ∈ R is such that γn → γ, then (ω, γn, A) → ρ(ω, γ,A) where the convergence is
uniform on compact subsets of Ω × C0(Ω, sl(2,R)).

Rotation Number : Spectral Properties

The dichotomy property is closely related to the spectral properties of certain differential operators.
This relation results with an introduction of a ‘spectral parameter’ λ. This is done as follows: given
A ∈ C0(Ω, sl(2,R)), consider the system

x′ = [A(T γ
t ω) + λJ ]x , (2.1)

where J =
(

0 −1
1 0

)

and λ ∈ R or more generally in C. The system generates the cocycle Xγ
A+λJ . Also

consider the following AKNS operator Lω associated with A,

LA
ω = J−1

[d

dt
−A(T γ

t ω)
]

.

This is viewed as an unbounded self-adjoint operator on the Hilbert space L2(R,C2) of square integrable
C2-valued functions on R.

(1) The following proposition describes the resolvent of this operator in terms of the notion of ED, (for
details and proofs cf. [11] as well as [3]).

Proposition 2.3 (a) Let A ∈ C0(Ω, sl(2,R)). A complex number λ is in the resolvent of LA
ω if and

only if the cocycle Xγ
A+λJ admits ED.

(b) Suppose that the cocycle Xγ
A+λJ generated by the system (2.1) does not admit ED for all λ ∈ I, where

I ⊂ R is some open interval containing 0. Then the map λ→ ρ(ω, γ,A+ λJ) is strictly increasing.
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(2) We shall also need the following proposition. This is based on the fact : Given a cocycle XA based
on a periodic base flow with period T , the polar component of the eigenvalue of the ‘monodromy matrix’
XA(ω∗, T ) is eiρT , where ρ is the rotation number of XA, (see cf. [20] as well as [6]).

Proposition 2.4 Suppose the flow (Ω, {T γ
t }t∈R) is periodic with period T > 0. Let A ∈ C0(Ω, sl(2,R)).

Suppose for some ω ∈ Ω and λ ∈ R, ρ(ω, γ,A + λJ) = 2πm
T

for some integer m. Then λ is either (i)
in the closure of a resolvent interval or (ii) λ is a ‘closed gap’. In this last case, tr(Xγ

A+λJ(ω, T )) = 2
because the rotation number is an even multiple of π

T
.

We say that λ ∈ R is a closed gap for the operator Lω = J−1
[

d
dt

−A(T γ
t ω)

]

if the rotation number

ρ(ω, γ,A + λJ) = πk
T

for some integer k and if λ is not an end point of a spectral gap of the spectrum
of Lω. Now we shall state the crucial result we need, (see [15], Proposition 4, for complete details).

Proposition 2.5 (A perturbation lemma based on the rotation number argument) Fix ω∗ ∈ Ω. Let
γ /∈ Q. Let A0 ∈ Cr(Ω, sl(2,R)). Suppose that for some ε > 0, the cocycle Xγ

A does not admit ED for
any A such that ||A−A0||r < ε. Fix a sequence γn → γ so that each flow (Ω, {T γn

t }t∈R) is periodic with
period qn and qn → ∞.

Then given any ξ > 0, there exists some n1 ∈ N such that for each n ≥ n1 there exists a function
An ∈ Cr(Ω, sl(2,R)) such that

(1) ||A−An||r < ξ and

(2) tr
(

Xγn

An
(ω∗, qn)

)

= 2.

B : Quantitative perturbation lemma I

For the proof of both main theorems, we need quantitative statements about perturbing a parabolic
matrix. The following lemma is the first one, the second will be proved in the next section. First we
remark that we need to consider both, the uniform norm || || and the supremum norm || ||∞ on the vector
space of 2 × 2 real matrices. Let C1 and C2 be constants such that ||g|| ≤ C1||g||∞ and ||g||∞ ≤ C2||g||
for all 2 × 2 matrices g. Let P denote the set of parabolic matrices, i.e.

P = {g ∈ SL(2,R) | tr(g) = 2} .

Lemma 2.6 (A quantitative perturbation lemma) Let M > C2 be given. Let P (M) be the compact set
of parabolic matrices given by

P (M) = {g ∈ P | ||g|| ≤M} .

Then there exists η0 ≡ η0(M) > 0 and a constant L ≡ L(M) > 0 such that the following holds:
For any η ∈ (0, η0) there exists m ≡ m(M,η) ∈ N such that

(1) m ≤ L
η

and

(2) given any g ∈ P (M), there exists g1 ∈ SL(2,R) such that

(2a) ||g − g1|| < η, and

(2b) ||gm
1 || > M .
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Proof: Note that if g ∈ SL(2,R) and tr(g) = 2, then g can be written as

g ≡ gµ,ϕ = R(ϕ)
(

1 µ
0 1

)

R(ϕ)−1 ,

for some ϕ ∈ [0, π) and µ ∈ R, where R(ϕ) =
(

cosϕ sinϕ
−sinϕ cosϕ

)

. To see this, note that the characteristic

equation of g is λ2 − 2λ + 1 = 0 and g has a unique eigenvalue 1 with algebraic multiplicity 2. Let

v =

(

cos(ϕ)
sin(ϕ)

)

be an eigenvector of g of standard Euclidean norm 1, and let w =

(

−sin(ϕ)
cos(ϕ)

)

be the

unit vector orthogonal to v. Since (g − I)2 = 0, gw − w is an eigenvector of g. Thus gw − w = µv for
some µ ∈ R. This shows that parabolic g has such a parametric representation g ≡ gµ,ϕ, ϕ ∈ [0, π) and
µ ∈ R.

Next, note that

||gµ,ϕ − gµ′,ϕ|| ≤ ||
(

1 µ
0 1

)

−
(

1 µ′
0 1

)

|| ≤ C1 ||
(

1 µ
0 1

)

−
(

1 µ′
0 1

)

||∞ ≤ C1|µ− µ′| .

Let η > 0 be given. Then given any g ≡ gµ,ϕ ∈ P (M), taking g′ = gµ′,ϕ, where µ′ is chosen so that (i)
|µ− µ′| < η

C1
and (ii) |µ′| > η

2C1
. We have made sure that ||g − g′|| < η. Now consider,

||(g′)m|| = ||
(

1 mµ′
0 1

)

|| ≥ C2||
(

1 mµ′
0 1

)

||∞ = C2m|µ′| > m
C2η

2C1
> M ,

where m ∈ N is chosen be the first positive integer such that m η
2C1

> M
C2

> 1, (note that our choice has
made m|µ′| > 1, which allowed us to write the norm of the last matrix on the above line as m|µ′|). Now
we need to only verify the estimate on m. Since m ≤ 2C1M

C2η
+ 1, if η0 > 0 is chosen so that 1 < C1M

C2η0
,

then for any η ∈ (0, η0), we have

m ≤
2C1M

C2η
+
C1M

C2η
=
L

η
,

where L = 3C1M
C2

.

C : A quantitative open mapping result

The second key proposition is a quantitative statement about the openness of the ‘evaluation map’

A→ Xγn

A (ω∗, qn) : Cr(Ω, sl(2,R)) → SL(2,R), ,

where γn ∈ Q and ω∗ ∈ Ω are fixed. It says that given a rational γn = pn

qn
∈ [0, 1] and a A ∈

Cr(Ω, sl(2,R)), the above map is open at A ∈ Cr(Ω, sl(2,R)) and in fact the image of an ε ball under
this map contains a ball of radius K

qr
n
, where K is a constant that depends on ε, A and r but is

independent of qn. We also need a certain ‘uniformity’ with respect to the function A as well as with
respect to the rotation number pn

qn
. The precise statement follows and will be proved later, in the last

section of the paper.

Proposition 2.7 (A quantitative open mapping result) Let M > 0 and let

F ⊂ FM ≡ {A ∈ Cr(Ω, sl(2,R)) | ||A||r ≤M} ,

be a family of maps. Fix some closed non-degenerate interval J ⊂ (0, 1) and fix a left invariant metric
d∗ on SL(2,R). Let ε > 0 be given.

9



(I) Then there exists a constant K ≡ K(M, r, ε, J) > 0, with the following property: Let A ∈ F and
γn = pn

qn
∈ J be any rational. Let η = K

qr
n
. Then given any g∗ ∈ SL(2,R) such that d∗(Xγn

A (ω∗, qn), g∗) <

η, there exist a B ∈ Cr(Ω, sl(2,R)) such that
(a) ||B −A||r < ε and
(b) Xγn

B (ω∗, qn) = g∗.
In order to apply the above result to our situation we need to replace the left invariant metric by the

operator norm on matrices in SL(2,R) and this requires an additional ‘boundedness’ assumption. We
have,
(II) Let J ′ ⊂ J ∩Q. If in addition there exists a constant M1 > 0 such that ||Xγn

A (ω∗, qn)|| ≤M1 for all
A ∈ F and all γn ∈ J ′, then (for any γn ∈ J ′), there exists a constant K ≡ K(M1,M, r, ε, J) > 0 such
that the condition d∗(Xγn

A (ω∗, qn) , g∗) < η can be replaced by ||Xγn

A (ω∗, qn)− g∗|| < η, in the conclusion
of part (I).

Along with the above two propositions, we shall need the following version of Gronwall’s inequality.

D : Gronwall’s inequality

Lemma 2.8 (Gronwall’s estimate) Let A ∈ Cr(Ω, sl(2,R)) and α , γ ∈ [0, 1]. Suppose that ||Xα
A(ω∗, t)|| ≤

M for all t ∈ [0,∞). Then given any real number T > 0, we have

||Xα
A(ω∗, t) −Xγ

A(ω∗, t)|| ≤
MT 2||A||1

2

∣

∣α− γ
∣

∣et||A||0 , for all t ∈ [0, T ] , (2.2)

Proof: Fix any vector v ∈ Rn with ||v|| ≤ 1. Let xα(t) and xγ(t) denote the solutions of the
differential equations x′ = A(Tα

t ω
∗)x and x′ = A(T γ

t ω
∗)x respectively, satisfying the initial condition

xα(0) = xγ(0) = v. Then,

xα(t) − xγ(t) =

∫ t

0
A(Tα

s ω
∗)xα(s) −A(T γ

s ω
∗)xγ(s)ds

yields,

||xα(t) − xγ(t)|| ≤

∫ t

0
||A(Tα

s ω
∗) −A(T γ

s ω
∗)|| ||xα(s)||ds +

∫ t

0
||A(T γ

s ω
∗)|| ||xα(s) − xγ(s)||ds .

Now note that for s ∈ [0, t], by the mean value theorem

||A(Tα
s ω

∗) −A(T γ
s ω

∗)|| = ||A(x∗ + αs, y∗ + s) −A(x∗ + γs, y∗ + s)||

≤ ||
∂A

∂x
||0

∣

∣α− γ
∣

∣s ≤ ||A||1
∣

∣α− γ
∣

∣s ,

where ω∗ = (x∗, y∗) ∈ T 2. Furthermore, ||xα(s)|| = ||Xα(ω∗, s)v|| ≤ M ||v|| ≤ M , for all s > 0, by the
hypothesis. Thus,

||xα(t) − xγ(t)|| ≤
M ||A||1

2

∣

∣α− γ
∣

∣T 2 +

∫ t

0
||A||0 ||x

α(s) − xγ(s)||ds , for 0 ≤ t ≤ T .

Thus, the result follows by applying the Gronwall’s inequality and taking the supremum over all vectors
v with ||v|| ≤ 1.

Proof of the density of E(N)

Suppose E(N) is not dense in Cr(Ω, sl(2,R)). Thus there exists

10



(1) a function A0 ∈ Cr(Ω, sl(2,R)) and

(2) ε0 > 0 such that if ||A−A0||r < ε0 then

||Xα
A(ω∗, t)|| ≤ N , for all 0 ≤ t . (2.3)

Without loss of generality, we shall assume that

ε0 < ||A0||r . (2.4)

We shall construct a function B ∈ Cr(Ω, sl(2,R)) such that
(i) ||B −A0||r < ε0, and
(ii) B ∈ E(N), i.e. that there is some t > 0 such that ||Xα

B(ω∗, t)|| > N . This contradicts the assumption
and thus density of E(N) will be proved. The construction of map B will be carried out in several
steps.

Step (1) (The rotation number argument) : For each A such that ||A − A0||r < ε0, the cocycle Xα
A is

bounded, hence it does not admit exponential dichotomy. Applying Proposition (2.5) to A0 with γ = α,
γn = αn ≡ pn

qn
, ε = ε0

2 and ξ = ε0

2 , we get an n1 ∈ N and an infinite sequence An ∈ Cr(Ω, sl(2,R)),
n ≥ n1, such that
(i) ||A0 −An||r <

ε0

2 , for all n ≥ n1 and
(ii) tr

(

Xαn

An
(ω∗, qn)

)

= 2, for all n ≥ n1.
In particular, with our choice of ε0 < ||A0||r, we have

||An||r ≤ ||An −A0||r + ||A0||r ≤
ε0
2

+ ||Ao||r ≤ 2||A0||r , for all n ≥ n1 . (2.5)

Step (2) (Quantative perturbation argument I) : Next, apply Proposition (2.6) with M = 2N , (and
without loss of generality we assume M

C2
> 1). This yields constants η0 ≡ η0(2N) and L ≡ L(N) > 0

with the property described in that proposition.

Step (3) (Application of the open mapping theorem) : Fix any closed interval J ⊂ (0, 1) so that α ∈ J .
Now apply (II) of Proposition (2.7) with M = 2||A0||r, F = {An | n ∈ N , n > n1}, J

′ = {αn | αn ∈ J}
and ε = ε0

2 and with M1 = 2N . Estimate (2.5) and a computation in Step (5) will show that the
hypothesis of Proposition (2.7) is satisfied. So we get a constant K ≡ K(||A0||r, N, r, ε0, J) with the
property stated in that proposition. Set,

L∗ ≡ L∗(||A0||r, N, r, ε0, J) =
L

K
.

Step (4) (Choosing a large qℓ) : Now we fix a value of n-say ℓ so large that ℓ > n1 and such that the
following conditions hold.

αℓ ≡
pℓ

qℓ
∈ J , (2.6)

K

qr
ℓ

< η0 , (2.7)

Cq2ℓ ||A0||rexp
(

− (qr+1+κ
ℓ − 2||A0||rqℓ)

)

< 1 , (2.8)

CL∗
2||A0||rq

2r+2
ℓ exp

(

− qr+1+κ
ℓ + 2L∗q

r+1
ℓ ||A0||r

)

< 1 (2.9)
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Step (5) (First application of Gronwall) : Verifying hypothesis of Proposition (2.6) and (2.7)) : Let
g = Xαℓ

Aℓ
(ω∗, qℓ). Note that by (2.3), hypothesis of Lemma (2.8) is satisfied. Applying Lemma (2.8)

with M replcaed by N and with T = qℓ, we get the following estimate.

||g|| ≤ ||Xαℓ

Aℓ
(ω∗, qℓ) −Xα

Aℓ
(ω∗, qℓ)|| + ||Xα

Aℓ
(ω∗, qℓ)||

≤
N(qℓ)

2||Aℓ||1
2

∣

∣α− αℓ

∣

∣exp(||Aℓ||0qℓ) +N

≤ N
C(qℓ)

2||Aℓ||r
2

exp
(

− (qr+1+κ
ℓ − ||Aℓ||rqℓ)

)

+N || by (1.7)

≤ NC(qℓ)
2||A0||rexp

(

− (qr+1+κ
ℓ || − 2||A0||rqℓ)

)

+N by (2.5)||

≤ N +N = 2N , by (2.8) . (2.10)

Step (6) (Selecting a suitable perturbation) : Above estimate shows that g = Xαℓ

Aℓ
(ω∗, qℓ) ∈ P (2N).

Hence we can apply Proposition (2.6), taking η = K
qr
l
, (note that η < η0 by (2.7)). Thus we find a

g1 ∈ SL(2,R) and m ∈ N such that

||g − g1|| < η and ||gm
1 || > 2N ,

where m satisfies

m ≤
L

η
=
Lqr

ℓ

K
= L∗q

r
ℓ , (2.11)

recall that L∗ = L
K

.

Step (7) (Construction of B) : Next, apply Proposition (2.7), part (II), with choice of parameters as
stated in Step (3). Take g∗ = g1. Note that the estimate in Step (5) shows that the hypothesis holds.
Thus we get a map B ∈ Cr(Ω, sl(2,R)) such that
(a) ||B −Aℓ||r <

ε0

2 and
(b) Xαℓ

B (ω∗, qℓ) = g1.

We shall show that the map B is the required map. We already have

||B −A0||r ≤ ||B −Aℓ||r + ||Aℓ −A0||r <
ε0
2

+
ε0
2

= ε0 .

Step (8) (Second application of Gronwall) : Suppose B /∈ E(N), this means

Xα
B(ω∗, t) ≤ N , for all t > 0 . (2.12)

We shall get a contradiction to this estimate. Since the rotation flow with rotation number αℓ is periodic
with period qℓ, we have

Xαℓ

B (ω∗,mqℓ) = (Xαℓ

B (ω∗, qℓ))
m = gm

1 .

Thus,
||Xαℓ

B (ω∗,mqℓ)|| = ||gm
1 || > 2N . (2.13)

Now using Gronwall, we show that ||Xα
B(ω∗,mqℓ)|| > N . This contradicts (2.12) and shows that

B ∈ E(N), thus completing the proof.
First note that Max{||B||0 , ||B||1} ≤ ||B||r ≤ ||A0||r + ε0 ≤ 2||A||r. Now applying Lemma (2.8)

with A = B, M = N and T = mqℓ, estimate (2.2) yields

||Xα
B(ω∗,mqℓ) −Xαℓ

B (ω∗,mqℓ)|| ≤
N(mqℓ)

2||B||1
2

∣

∣α− αℓ

∣

∣exp
(

mqℓ||B||0
)

≤ N(mqℓ)
2||A0||r

∣

∣α− αℓ

∣

∣exp
(

2mqℓ||A0||r
)

.

12



Using estimate (2.11) we get

||Xα
B(ω∗,mqn)−Xαℓ

B (ω∗,mqn)|| ≤ NL2
∗||A0||r q

2r+2
ℓ

∣

∣α− αℓ

∣

∣ exp
(

2L∗q
r+1
ℓ ||A0||r)

)

≤ NCL2
∗||A0||rq

2r+2
ℓ exp

(

− qr+1+κ
ℓ + 2L∗q

r+1
ℓ ||A0||r

)

, by (1.7)

≤ N , (by 2.9) .

This estimate along with estimate (2.13) implies that ||Xα
B(ω∗,mqℓ)|| > N , which is what we wanted

to prove to get a contradiction.

3 Proof of Theorem (1.9)

We begin by introducing some notation. We shall think of the real projective 1-space-P-as the semicircle
{eiθ | 0 ≤ θ ≤ π} whose ‘ends’ 1 and −1 are identified.

(a) Let d denote the ‘usual angular metric’ on P, (i.e. d(eiθ1 , eiθ2) = inf{|θ1 − θ2|, |π − (θ1 + θ2)|},
θ1, θ2 ∈ [0, π)). Without loss of generality we shall assume that if [v1], [v2] ∈ P, then

d([v1] , [v2]) ≤ D ||
v1

||v1||
−

v2
||v2||

|| ,

where D > 0 is some (universal) constant and || || is the usual Euclidean norm on R2.

(b) Let
Ur = {A ∈ Cr(Ω, sl(2,R)) | Xα

A is uniformly hyperbolic} .

(c) For a given N ∈ N and δ > 0 define the set

F (N, δ) = Ur ∪ F̃ (N, δ) ,

where

F̃ (N, δ) = {A ∈ Cr(Ω, sl(2,R)) | ∃ ti ∈ R , |ti| > N , (i = 1, 2), and an open set Wδ(A) ⊂ P with

diam
(

Wδ(A)
)

< δ such that if [v1] , [v2] /∈Wδ(A) then d
(

[Xα
A(ω∗, tj)v1], [X

α
A(ω∗, tj)v2]

)

< δ ,

for either j = 1 or for j = 2} .

First, we claim that if A ∈ ∩n∈NF (n, 1
n
) then either Xα

A is uniformly hyperbolic or Xα
A is proximal.

Suppose Xα
A is not uniformly hyperbolic. Let [v1], [v2] ∈ P, [v1] 6= [v2]. Let n1 ∈ N be such that

d([v1], [v2]) >
1
n

for all n ≥ n1. Thus for each n ≥ n1, since A ∈ F (n, 1
n
), there is some tn, tn > n such

that d([Xα
A(ω∗, tn)v1] , [X

α
A(ω∗, tn)v2]) ≤

1
n
. This shows that all distinct points in the fiber over ω∗ are

proximal. By the minimality of the base flow, it follows that the skew product projective flow generated
by the cocycle Xα

A is a proximal extension, i.e. Xα
A is proximal, (see [4]).

Thus, our theorem now follows from the Baire category argument once we show that each F (N, δ)
is open and dense in Cr(Ω, sl(2,R)). Openness of the set Ur in Cr(Ω, sl(2,R)) is a general fact about
uniform hyperbolicity and the openness of the set F̃ (N, δ) is a consequence of continuity of the map
A→ Xα

A(ω∗, t), (for a fixed t) and the compactness of P × P\Wδ(A)×Wδ(A). Now we prove that each
F (N, δ) is dense.

So, let N ∈ N, δ > 0, A0 ∈ Cr(Ω, sl(2,R)) and ε0 > 0 be given. We shall suppose that Xα
A is not

uniformly hyperbolic for any A that is within ε0 neighbourhood of A0. We shall construct a function
B ∈ Cr(Ω, sl(2,R)) such that
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(i) ||B −A0||r < ε0, and
(ii) B ∈ F̃ (N, δ).

As before, the construction B will involve the same four ‘ingradients’. However, now we need
a different quantitative perturbation lemma to ensure proximality and we need a ‘uniformity result’
about perturbations of parabolic matrices. We begin by introducing a bit more notation.

(d) Recall that P denotes the set of parabolic matrices and one can parametrize P as P = {g = gµ,θ | µ ∈
R , 0 ≤ θ < π}. Note that the unique eigenvector of gµ,θ with standard Euclidian norm 1, is the vector
(

cos(θ)
sin(θ)

)

.

(e) Given a δ > 0, let Wδ(g) ≡Wδ(gµ,θ) denote the open δ ball in P centered at the ray determined by
the eigenvector of gµ,θ.

Proposition 3.1 (A quantitative perturbation lemma II) Let N ∈ N and δ ∈ (0, π
2 ) be given. Then

there exists a constant D∗ ≡ D∗(δ) > 0 such that given any ‘small enough’ η > 0, (more precisely
η ∈ (0, η∗) where η∗ = 4

N tan(δ) ), there exists a positive integer m ∈ N such that

(1) N < m,

(2) m ≤ D∗

η
, and

(3) the following holds : given any g ∈ P , we can find a g1 ∈ P such that

(3a) ||g − g1|| < η, and

(3b) if [v1] , [v2] /∈Wδ(g), then d
(

[gk
1v1], [g

k
1v2]

)

< δ, for either k = m or k = −m.

Proof: We want to find a constant D∗ ≡ D∗(δ) and m ≡ m(δ, η) ∈ N such that the three properties
listed in the lemma hold. We begin by considering gµ ≡ gµ,0 ∈ P and shall obtain D∗ and m so that
properties (1) and (2) will hold and property (3) will hold for g’s of this form. Then we show that the
same D∗ and m ‘will work’ for any general g ≡ gµ,θ in P .

So consider a gµ ≡ gµ,0 ∈ SL(2,R) and a point eiθ ∈ P, (0 ≤ θ < π). Let θgµ ∈ [0, π) be the angle

determined by the ray corresponding to the vector gµ

(

cos(θ)
sin(θ)

)

=
(

1 µ
0 1

)

(

cos(θ)
sin(θ)

)

. Note that

tan(θgµ) =
1

1
tan(θ) + µ

,

(we treat ∞ and 0 as reciprocals of each other). We introduce the following subsets of P,

S+
δ = {eiϕ | 0 ≤ ϕ < δ} and S−

δ = {eiϕ | π − δ < ϕ ≤ π} .

Note that, Wδ(gµ,0) = S+
δ ∪ S−

δ .
Suppose µ ≥ 0 and eiθ /∈ S−

δ . Then, − 1
tan(δ) <

1
tan(θ) , Given η ∈ (0, η∗), select µ1 > 0 so close to µ

that ||gµ − gµ1
|| < η and η

2 < µ1. Our g1 will be gµ1
, thus (3a) holds. Next, for any n ∈ N,

tan(θgn
µ1

) = tan(θgnµ1
) =

1
1

tan(θ) + nµ1
≤

1
1

−tan(δ) + nµ1
<

1
1

−tan(δ) + nη
2

.

Thus if we choose m ∈ N to be the first positive integer n so that − 1
tan(δ) +nη

2 >
1

tan(δ) , i.e. n > 4
ηtan(δ) ,

then
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(i) m > 4
η tan(δ) >

4
η∗tan(δ) = N and

(ii) m ≤ 4
η tan(δ) + 1 ≤ 4

ηtan(δ) + 4
ηtan(δ) = 8

ηtan(δ) , (note that 1 ≤ N < 4
ηtan(δ) ). Thus (2) holds with

D∗ = 8
tan(δ) . Also note that D∗ and m are independant of g ∈ P as long as g has the form g = gµ,0.

(iii) Now we verify property (3b). Since Wδ(gµ,0) = S+
δ ∪ S−

δ , by our choice of m, tan(θgm
µ1

) < tan(δ),

which means that gm
µ1

maps the complement of S−
δ into S+

δ . In particular, if [v1], [v2] /∈ S−
δ then

d([gm
µ1
v1], [g

m
µ1
v2]) < δ. Similarly, if [v1], [v2] /∈ S+

δ then d([g−m
µ1

v1], [g
−m
µ1

v2]) < δ. Thus, we have proved
that (3b) holds. If µ < 0, a similar argument can be given interchanging the roles of m and −m.

Now we consider the case of a general g ∈ P . We show that the chosen D∗ and m will also ‘work’
for this g as well, i.e. (3) of this lemma remains valid for this g. As seen before, such a g can be written
as

g ≡ gµ,ϕ = R(ϕ)gµ,0R(ϕ)−1 ,

where R(ϕ) is the rotation matrix corresponding to rotation by angle ϕ. Since R(ϕ) is angle and norm
preserving, our previous analysis remains valid for gµ,ϕ as well. Again we shall assume that µ ≥ 0, (other
case is similar). Select µ1 close enough to µ so that ||gµ,ϕ − gµ1,ϕ|| < η and µ1 >

η
2 , (this is possible

since R(ϕ) is norm preserving). Take Wδ(gµ,ϕ) = R(ϕ)(Wδ(gµ,0)). Since R(ϕ) is angle preserving, it
follows that gm or g−m will map all points not in Wδ(gµ,ϕ) within δ of each other. Thus (3) holds.

Next, we also need a uniformity lemma. Note that, for a fixed v ∈ R2, the map g → gv : SL(2,R) →
R2 is uniformly continuous because of linearity of the action of SL(2,R) on R2, but this is not so for
the map g → [gv] : SL(2,R) → P. For the approximation argument we shall need the following.

Lemma 3.2 Let g ∈ P , [v] /∈Wδ(g) and h ∈ SL(2,R), then

d([gv], [hv]) ≤
2D

|sin(δ)|
||g − h|| .

Proof: Let g ∈ P , [v] /∈Wδ(g), ||v|| = 1 and h ∈ SL(2,R), consider

d([gv], [hv]) ≤ D||
gv

||gv||
−

hv

||hv||
|| ≤

D

||gv|| ||hv||

∣

∣

∣

∣ ||hv|| gv − ||gv||hv
∣

∣

∣

∣

≤
D

||gv||| ||hv||

[

||hv|| ||gv − hv|| +
∣

∣ ||hv|| − ||gv||
∣

∣ ||hv||
]

≤
D

||gv||

[

||g − h|| ||v|| + ||g − h|| ||v||
]

=
2D

||gv||
||g − h|| . (3.1)

Now let g ≡ gµ,θ. Since v /∈ Wδ(g) = R(θ)Wδ(gµ,0), hence R(θ)−1v /∈ Wδ(gµ,0). Thus letting [v] =

R(θ)

(

cos(ϕ)
sin(ϕ)

)

=

(

cos(ϕ+ θ)
sin(ϕ+ θ)

)

, it follows that |sin(ϕ)| > |sin(δ)|. Thus,

||gv||2 = ||R(θ)gµ,0R(θ)−1v||2 = ||
(

1 µ
0 1

)

(

cos(ϕ)
sin(ϕ)

)

||2 ≥ |sin(ϕ)|2 ≥ |sin(δ)|2 .

Thus, d([gv], [hv]) ≤ 2D
|sin(δ)| ||g − h|| .

Proof of the density of F (N, δ)

Proof: Thus, N ∈ N and δ > 0 are given, (without loss of generality, we shall assume that
δ ∈ (0, π

2 )). To prove the density, we shall let A0 ∈ Cr(Ω, sl(2,R)), ε0 > 0 and suppose that Xα
A is
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not uniformly hyperbolic for any A that is within the ε0 neighbourhood of A0. We shall construct a
function B ∈ Cr(Ω, sl(2,R)) such that
(i) ||B −A0||r < ε0, and
(ii) B ∈ F̃ (N, δ).

Step (1) (The Rotation number argument) : Since Xα
A is not uniformly hyperbolic for any A that is

within the ε0 neighbourhood of A0, applying Proposition (2.5) to A0 with γ = α, γn = αn ≡ pn

qn
, ε = ε0

2
and ξ = ε0

2 , we get an n1 ∈ N and an infinite sequence An ∈ Cr(Ω, sl(2,R)), n ≥ n1, such that
(i) ||A0 −An|| <

ε0

2 , for all n ≥ n1 and
(ii) tr

(

Xαn

An
(ω∗, qn)

)

= 2, for all n ≥ n1.
As in the proof of density of E(N), without loss of generality, we shall assume that ε0 < ||A0||r and

we get the estimate ||An||r ≤ 2||A0||r for all n ≥ n1.

Step (2) (Qualitative perturbation lemma II) : Next, apply Proposition (3.1) with the given N and δ.
Let η0 = 4

N tan(δ) . Then Proposition (3.1) yields for every η ∈ (0, η0), a constant D∗ ≡ D∗(δ) and a

positive integer m ≡ m(δ, η) ∈ N with the properties described in Proposition (3.1). The choice of η
will be made in Step (5).

Step (3) (Application of the open mapping theorem) : Fix any closed interval J ⊂ (0, 1) so that α ∈ J .
Now apply (II) of Proposition (2.7) with M = 2||A0||r, F = {An | n ∈ N , n > n1}, J

′ = {αn | αn ∈ J}
and ε = ε0

2 and with M1 = C1
η0

2 . We shall see later that the hypothesis of Proposition (2.7) is satisfied,
(see the comment in Step (5)). So we get a constant K ≡ K(||A0||r, N, δ, r, ε0, J) with the property
stated in that proposition.

Step (4) (Choosing a large qℓ) : Now we fix a value of n-say ℓ so large that ℓ > n1 and such that the
following conditions hold.

αℓ ≡
pℓ

qℓ
∈ J , (3.2)

K

qr
ℓ

< η0 , (3.3)

C||A0||rD
∗2q2r+2

ℓ

K2
exp

(4||A0||rD
∗qr+1

ℓ

K
− qr+1+κ

ℓ

)

<
δ

3
·
|sin(δ)|

2D
. (3.4)

Step (5) (Selecting a suitable pertubation) : Apply Proposition (3.1) with η = K
qr
ℓ
< η0 and δ replaced

by δ
3 . Thus we get an integer m ≡ m(δ, η) so that the conclusions of that Proposition hold. Thus, (i)

N < m, (ii) m ≤ D∗

K
qr
ℓ and (iii) taking g = Xαℓ

Aℓ
(ω∗, qℓ) ∈ P , we find a g1 ∈ P that satisfies (3a) and

(3b) of Proposition (3.1).
At this point we remark that if we look at the proof of Proposition (3.1), we need to change g to

g1 only if |µ| ≤ η
2 where g = Xαℓ

Aℓ
(ω∗, qℓ) = gµ,θ. That is, properties (1) to (3) of Proposition (3.1) are

valid for g ≡ gµ,θ itself if |µ| ≥ η0

2 . This means that the case when we need to apply Proposition (3.1)
to get a perturbation g1 is when g = Xαℓ

Aℓ
(ω∗, qℓ) = gµ,θ has norm less than or equal to Max{C1 , C1

η0

2 }.
Thus, hypothesis of Proposition (2.7) part II holds with M1 = Max{C1 , C1

η0

2 }.

Step (6) (Construction of B) : Next, apply Proposition (2.7) with the same choice of parameters
as in Step (3). Take g∗ = g1, where g1 ∈ P is the element obtained in Step (5). Thus, we get
B ∈ Cr(Ω, sl(2,R)) such that
(a) ||B −Aℓ||r <

ε0

2 and
(b) Xαℓ

B (ω∗, qℓ) = g1.
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We shall show that the map B is the required map.

Step (7) (Verifying that B ∈ F (N, δ)) : Recall that g = Xαℓ

Aℓ
(ω∗, qℓ) ∈ P and g1 = Xαℓ

B (ω∗, qℓ) ∈ P
and note that g1 obtained in Step (5) by applying Proposition (3.1) have the same eigen vector. Thus
Wδ(g1) = Wδ(g), now take Wδ(B) to be Wδ(g1). We shall verify that if [v1], [v2] /∈ Wδ(B) then
d([Xα

B(ω∗, t)v1], [X
α
B(ω∗, t)v2]) < δ for either t = mqℓ or t = −mqℓ. This will prove that B ∈ F̃ (N, δ).

Since g1 satisfies (3b) of Proposition (3.1), we know that if [v1], [v2] /∈Wδ(B), then

d([Xαℓ

B (ω∗, qℓ)
kv1], [X

αℓ

B (ω∗, qℓ)
kv2]) <

δ

3
for either k = m or k = −m.

Note that Xαℓ

B (ω∗,±mqℓ) = Xαℓ

B (ω∗, qℓ)
±m, since the flow with winding number αℓ is periodic with

period qℓ. Now suppose

||Xα
B(ω∗,mqℓ) −Xαℓ

B (ω∗,mqℓ)|| ≤
δ

3

|sin(δ)|

2D
. (3.5)

Using Wδ(B) = Wδ(g1) = Wδ(g), lemma (3.2) shows that if [v1], [v2] /∈Wδ(B), then for either k = m or
k = −m,

d([Xα
B(ω∗,±mqℓ)vi], [X

αℓ

B (ω∗,±mqℓ)vi]) <
δ

3
for i = 1, 2 .

Thus, by the triangle inequality, (for metric d on P), it follows that B ∈ F̃ (N, δ). So the proof
boils down to checking estimate (3.5), which will result from the Gronwall’s inequality along with the
choice of qℓ made in (3.4). We cannot use the previous version of Gronwall directly because now
our cocycle Xα

B(ω∗, t) is not bounded for all t > 0. However this is not a problem because we need
only an a priori bound on Xα

B(ω∗, t) for t ∈ [0,mqℓ]. First note that ||B||i ≤ ||B − A0||i + ||A0||i ≤
ε0 + ||A0||i ≤ 2||A0||r, for 1 ≤ i ≤ r, (without loss of generality we have assumed that ε0 < ||A0||r).
Let γ ∈ [0, 1] be any winding number. Note that x(t) = Xγ

B(ω∗, t)x0 satisfies the integral equation

x(t) = x0 +
∫ t

0 B(T γ
s ω∗)x(s)ds. Hence the estimate ||x(t)|| ≤ ||x0||+

∫ t

0 ||B(T γ
s ω∗)|| ||x(s)||ds allows one

to apply Gronwall’s inequality which yields the estimate ||Xγ
B(ω∗, t)x0|| ≤ ||x0||e

||B||0t ≤ ||x0||e
2||A0||rt

for any t > 0. Taking the supremum over all ||x0||’s of norm one yields

||Xγ
B(ω∗, t)|| ≤ e2||A0||rt . (3.6)

for all t > 0. Thus, now applying inequality (2.2) with A = B and where M is replaced by the bound
e2||A0||rT , where T = mqℓ, we get

||Xα
B(ω∗,mqℓ) −Xαℓ

B (ω∗,mqℓ)|| ≤
||B||1m

2q2ℓ
2

e2||A0||rmqℓ
∣

∣α− αℓ

∣

∣e||B||0mqℓ

≤
||A0||r(D

∗)2q2r+2
ℓ

K2
exp

(4||A0||0D
∗qr+1

ℓ

K

)
∣

∣α− αℓ

∣

∣ (since m ≤
D∗qr

ℓ

K
) ,

≤
C||A0||r(D

∗)2q2r+2
ℓ

K2
exp

(4||A0||rD
∗qr+1

ℓ

K
− qr+1+κ

ℓ

)

≤
δ

3

|sin(δ)|

2D
, by (3.4) .

This establishes the desired inequality (3.5) and the proof is complete.
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4 Proof of Proposition (2.7)

We begin with some notation and observations.

(1) We shall think of Ω as R2/Z2. Let e : R2 → R2/Z2 be the exponential mapping e(x, y) =
(e2πix, e2πiy). Given a rational rotation number αn = pn

qn
∈ J , consider flows {T̃αn

t }t∈R and {T̃t}t∈R

on R2 defined by

T̃αn
t (x, y) = (x+ αnt, y + t) ,

T̃t(x, y) = (x, y + t) .

The flow {T̃αn
t }t∈R projects on to the flow {Tαn

t }t∈R on T2 and has a ‘natural fundamental domain’
Fn ⊂ R2 given by the parallalogram

Fn = {T̃αn
t (x, 0) | −

1

2qn
≤ x ≤

1

2qn
, 0 ≤ t ≤ 1} .

Note that Fn is also a flow box and it is a ‘fundamental domain’ in the sense that the first qn iterates of
e(Fn) ⊂ T2, under the time one map of the flow (Ω, {Tαn

t }t∈R) ‘partitions’ Ω. Note that e : Fn → e(Fn)
is a Cr diffeomorphism.

(2) Now, given a αn ∈ J and a map A : Ω → sl(2,R), our perturbation of A will be of the form A+B
where B; Ω → sl(2,R) and support of B will be in the interior of e(Fn). It is convinient to construct
the perturbation on Fn and then define it on e(Fn) via composition with e−1. In fact, for clarity it is
even better to ‘straighten out’ the parallalogram Fn and replace it by the rectangle Rn ⊂ R2 defined by

Rn = [−
1

2qn
,

1

2qn
] × [0, 1] .

Clearly Rn is a flow box for the flow {T̃t}t∈R defined above and the map Hn : R2 → R2 defined by

Hn(x, y) = (x+ αny, y) ,

is a diffeomorphism, mapsRn diffeomorphically onto Fn and also intertwines flows {T̃t}t∈R and {T̃αn
t }t∈R,

i.e.
Hn ◦ T̃t(x, y) = T̃αn

t ◦Hn(x, y) , for x, y ∈ Rn , and 0 ≤ t ≤ 1 .

(3) Thus, given a αn ∈ J and a map A : Ω → sl(2,R), let a : Rn → sl(2,R) be the map

a = A ◦ En , where (4.1)

En = e ◦Hn : Rn → T2 , (4.2)

(i.e. the small case letters will denote composition with En of a map denoted by the corresponding
capital letter). Note that En is a diffeomorphism from Rn onto its image e(Fn), maps (0, 0) to ω∗ and
it intertwines flows {T̃t}t∈R and {Tαn

t }t∈R. In particular, considering just the orbit of ω∗, this implies
that

Xαn

A (ω∗, t) = Xa(t) , for all t ∈ [0, 1] , (4.3)

where Xa(t) : [0, 1] → SL(2,R) is the solution to the initial value problem X ′ = a(T̃t(0, 0))X = a(0, t)X,
X(0) = I.
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(4) Recall that given M > 0, ε > 0, J ⊂ (0, 1) and a family F ⊂ FM ≡ {A ∈ Cr(Ω, sl(2,R)) | ||A||r ≤
M}, for any A0 ∈ F and γn = pn

qn
∈ J “if g∗ ‘sufficiently close” to Xγn

A0
(ω∗, qn), then we want to find a

perturbation (i.e. a map B0) within ε of A0 such that Xγn

B0
(ω∗, qn) = g∗. We shall consider a0 = A0 ◦En

and find its perturbation b0 : Rn → sl(2,R) supported on Rn. Then B0 = b0 ◦E
−1
n will be the required

perturbation of A0. Note that (A0 + B0) ◦ En = A0 ◦ En + B0 ◦ EN = a0 + b0 and hence by (4.3) we
have

Xγn

A0+B0
(ω∗, 1) = Xa0+b0(1) .

(5) The perturbed map b0 will be of the form

b0(x, y) = a0(x, y) + b1(x)b2(y) ,

where b1 : [− 1
2qn

, 1
2qn

] → R and b2 : [0, 1] → sl(2,R). Again, recall that [0, 1] is identified with

{(0, y) ∈ Rn | y ∈ [0, 1]} = {T̂t(0, 0) | 0 ≤ t ≤ 1}. We shall condsider the construction of b2 on this set
shortly, whereas map b1 is just a smooth bump function which satisfies
(i) b1 is Cr,
(ii) b1(0) = 1 and
(iii) support of b1 is compact and contained in (− 1

4qn
, 1

4qn
).

To construct b1, take any Cr bump function, say ψ, with compact support inside (−1, 1) and dilate
it, i.e. set b1(t) = ψ(4qnt), for t ∈ [− 1

2qn
, 1

2qn
]. Thus ||b1||r ≤ K4(r)q

r
n where K4 is some universal

constant that depends on ψ and hence only on r.

(6) Before describing the construction of b2, let us consider some estimates. First, the product rule
implies

||A0 −B0||r = ||(a0 − b0) ◦ E
−1
n ||r ≤ K1(r)||E

−1
n ||r||a0 − b0||r ,

where K1 is some constant that depends only on r. Furthermore ||E−1
n ||r ≤ K2(r, J), where K2 is a

constant that depends on r and J alone, (as long as J is compact and does not contain 0 or 1, first r
derivarives of E−1

n are bounded by a constant that depend only on J and r). Thus,

||A0 −B0||r = K1K2||a0 − b0||r .

Now,
||a0 − b0||r = ||b1b2||r ≤ K3||b1||r ||b2||r ,

where K3 ≡ K3(r) is a constant dependent only on r, (again due to the product rule). We already saw
that ||b1||r ≤ K4q

r
n. Thus we have

||A0 −B0||r ≤ K1K2K3K4q
r
n||b2||r, ,

where the constants Ki, (1 ≤ i ≤ 4) depend only on r and J .

(7) Finally, we have to construct map b2 : [0, 1] → sl(2,R) and this map will depend on the choice of
point g∗ sufficiently close to Xγn

A0
(ω∗, qn). Existence of such a map is a consequence of an open mapping

theorem which we shall formulate now.
Consider the space Cr([0, 1], sl(2,R))-the space of all Cr curves From [0, 1] to sl(2,R) with the Cr

metric. For f ∈ Cr([0, 1], sl(2,R)), and k, l ∈ N ∪ {0} with k < l, by a ‘(k, l)-jet of f at x’ we shall
mean the l − k + 1 vector (f (k)(x), · · ·, f (l)(x)). Our perturbation b1(x)b2(y) is supported on Rn, b1 is
a compactly supported Cr bump function, so to make the map b0 = a0 + b1b2 a Cr map, we need to
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make sure that b2 is Cr and the (0, r)-jet of b2 at 0 and 1 is zero (i.e. the zero matrix). So given any
a ∈ FM ≡ {f ∈ Cr([0, 1], sl(2,R)) | ||f ||r ≤M} and δ > 0, define

N r(a, δ) = {b ∈ Cr(Ω, sl(2,R)) | ||a− b||r < δ and a and b have the same (0, r) − jet at 0 and 1} .

For each b ∈ Cr([0, 1], sl(2,R)), let t → Xb(t) : [0, 1] → SL(2,R) be the solution to the initial value
problemX ′ = b(t)X, X(0) = I, where I is the identity matrix. Define Ψ : Cr([0, 1], sl(2,R)) → SL(2,R)
by setting

Ψ(b) = Xb(1) .

Then we have the following.

Lemma 4.1 Let M > 0. There exists a constant K∗ ≡ K∗(M, r) with the following property : given
any δ > 0, for any a ∈ FM , the image of the set N r(a, δ) under the map Ψ contains the ball

Bd∗(Ψ(a),K∗δ) = {g ∈ SL(2,R) | d∗(g,Ψ(a)) < K∗δ} .

(8) Using this lemma, first we shall finish the proof of Theorem (2.7). Recall that r ∈ N, M > 0,
J ⊂ (0, 1) and ε > 0, along with a family F ⊂ FM is given. Let A0 ∈ F and γn ∈ J . As discussed
before, let a0 = A0 ◦ En, our perturbed map B0 will be of the form B0 = b0 ◦ E−1

n where b0(x, y) =
a0(x, y)+b1(x)b2(y). To select map b2 we apply lemma (4.1) with a = a0 and δ = ε

K1K2K3K4qr
n
. We shall

see that the constant K in the conclusion of Proposition (2.7) will turn out to be K ≡ K(M, r, ε, J) =
K∗

K1K2K3K4
ε, (note that Ki’s depend on r and J , K∗ depends on M and r and in fact the dependence of

K on ε is linear).
To verify the conclusion (a) and (b) of Proposition (2.7), let g∗ ∈ SL(2.R) be such that

d∗(g∗,Xγn

A0
(ω∗, qn)) <

K

qr
n

.

Let h = Xγn

A0
(T1ω

∗, qn − 1))−1g∗, then

d∗(h ,Ψ(a0)) = d∗(h,Xa0
(1)) = d∗(h,Xγn

A0
(ω∗, 1))

= d∗(g∗,Xγn

A0
(T1ω

∗, qn − 1)Xγn

A0
(ω∗, 1)) , (by the left invariance of d∗) ,

= d∗(g∗,Xγn

A0
(ω∗, qn)) <

K

qr
n

, (note that
K

qr
n

= K∗δ) .

Select a′ ∈ N r(a0, δ) so that Xa′(1) = h and let b2 = a′ − a. Then, since A0(T1+tω
∗) = B0(T1+tω

∗) for
all t ∈ [0, qn − 1], it follows that XB0

(ω∗, qn) = g∗. Finally,

||A0 −B0||r ≤ K1K2K3K4q
r
n||b2||r ≤ K1K2K3K4q

r
n ×

ε

K1K2K3K4qr
n

= ε ,

by our choice of δ.
(II) This follows at once because if g1 and g2 are in the compact set {g ∈ SL(2,R) | ||g|| ≤ M1}, then
d∗(g1, g2) ≤ K5||g1 − g2|| for some constant K5 that depends on M1 alone. This completes the proof of
Proposition (2.7).

Now we turn to the proof of Lemma (4.1).

Proof of Lemma (4.1)
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Proof: Note that each a ∈ FM is uniquely determined by Xa, namely a = dXa

dt
X−1

a . Thus we
shall construct a perturbation b of a given a by considering perturbation of Xa (i.e. of the curve
t → Xa(t) : [0, 1] → SL(2,R)), of the form t → Xa(t)g(t), where t → g(t) : [0, 1] → SL(2,R) is a
suitable curve; and then take b to be b = dXa·g

dt
(Xa · g)

−1. Thus,

b(t) − a(t) =
dXa · g

dt
(Xa · g)

−1 − a(t) = Xa
dg

dt
(g)−1X−1

a . (4.4)

This identity and the above discussion points out that there is a constant K∗
1 ≡ K∗

1 (M, r) such that

||b− a||r ≤ K∗
1 ||g||r+1 .

Now we need to show that there is a constant K∗
2 ≡ K∗

2 (r) such that every point ξ that is within K∗
2δ

of the identity in SL(2,R) can be joined to the identity I by a smooth curve g : [0, 1] → SL(2,R) such
that

(i) g(k)(0) = g(k)(1)- the kth derivative of g at 0 and 1 are zero i.e. (-the zero matrix), for k =
1, 2, · · ·, r + 1 and

(ii) ||g||r+1 ≤ δ
K∗

1

.

Once this is proved, the proof of Lemma (4.1) follows by taking K∗ =
K∗

2

K∗

1

.

Thus, we have reduced our problem to showing that : given a δ > 0, there is a ball centered
at I in SL(2,R), of radius K∗

2δ, (where K∗
2 ≡ K∗(r)),such that every point in it can be joined to

the identity matrix I by a Cr curve t → g(t) whose Cr norm is less than δ and whose first r + 1
derivatives at 0 and 1 are 0. Now, these requirements on the curve t → g(t) are ‘local’ and SL(2,R) is
locally diffeomorphic to R3, thus it is enough to prove this for Cr maps from [0, 1] to R3. Futhermore,
considering each component, our construction reduces to applying the following lemma with ℓ = r + 1
and the construction will be complete.

Lemma 4.2 Given δ > 0 and ℓ ∈ N consider the set

Wδ ,ℓ = {g ∈ Cr([0, 1],R) | ||g||r < δ , g(k)(0) = 0 , 0 ≤ k ≤ ℓ and g(k)(1) = 0 , 1 ≤ k ≤ ℓ}, .

Then the image of Wδ ,ℓ under the evaluation map g → g(1) : Wδ ,ℓ → R contains a ball of radius K2δ,
(where the constant K2 ≡ K2(ℓ) depends only on ℓ).

Proof: An explicit construction of such a function can be given along the lines of ‘polynomial

interpolation’. Consider g(x) =
2ℓ+1
∑

k=ℓ+1

akx
k. Clearly g has the desired (0, ℓ)-jet at 0. We want the (0, ℓ)-

jet of g at 1 to be of the form (ξ, 0, 0, · · ·, 0), for any ξ close enough to 0. The map (aℓ+1, · · ·, a2ℓ+1) →
(g(1), g′(1), · · ·, g(ℓ)(1)) : Rℓ+1 → Rℓ+1 is linear and it is easy to see that the jth column vj of the matrix
P = (pij) representing it is given by (the transpose of), (1 , ℓ+j , (ℓ+j)(ℓ+j−1) , ··· , (ℓ+j)(ℓ+j−1)···j).

We claim that this matrix is nonsingular. To show this, suppose
ℓ+1
∑

j=1
µjvj = 0 for some scalars µj ,

(1 ≤ j ≤ ℓ + 1). This implies that (considering the first entry of this vector),
ℓ+1
∑

j=1
µj = 0, and (by
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considering the ith entry of this vector),
ℓ+1
∑

j=1
µj(ℓ + j)(ℓ + j − 1) · · · (ℓ + j − i) = 0, for 1 ≤ i ≤ ℓ. A

suitable combinations of these equations show that

ℓ+1
∑

j=1

µj j
p = 0 , for p = 0 , 1 , 2 , · · · , ℓ ,

This system of equations is just the linear system V µ̄ = 0, where V = (Vij) is the (ℓ + 1) × (ℓ + 1)
Vandermonde matrix given by vij = ji, (0 ≤ i ≤ ℓ and 1 ≤ j ≤ ℓ+ 1) and µ̄ = (µ1, · · · , µℓ+1)

t. It is well
known that this Vandermonde matrix V is nonsingular. Hence given δ > 0, the image of the δ ball in
Rℓ+1 centered at the zero vector contains a ball of radius δ

||V −1||
centered at zero.. Thus, the lemma is

proved and K∗
2 can be taken to be 1

||V −1||
, which depends only on ℓ.

I wish to thank the referee for suggestions and corrections which improved the earlier version of the
paper.
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