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Abstract

In 2009 [Schneider 1] obtained stability estimates in terms of the Banach-
Magzur distance for several geometric inequalities for convex bodies in an n-
dimensional Minkowski space E™. A unique feature of his approach is to express
fundamental geometric quantities in terms of a single function p: 8 x B8 — R
defined on the set of all convex bodies % in E™. In this paper we show that (the
logarithm of) the symmetrized p gives rise to a pseudo-metric dp on B inducing
a finer topology than Banach-Mazur’s dgys. Further, dp induces a metric on the
quotient B /Dilt of B by the relation of positive dilatation (homothety). Unlike
its compact Banach-Mazur counterpart, dp is only “boundedly compact,” in
particular, complete and locally compact. The general linear group GL(E™) acts
on B/Dil" by isometries with respect to dp, and the orbits space is naturally
identified with the Banach-Mazur compactum 8 /Aff via the natural projection
7 B/Dilt — B/Aff, where Aff is the affine group of E*. The metric dp has
the advantage that many geometric quantities are explicitly computable. We
will show that dp provides a simpler and more fitting environment for the study
of stability; in particular, all the estimates of [Schneider 1] turn out to be valid
with dpps replaced by dp.

1 A Positive-Dilatation Invariant Pseudo-Metric

Let E™ be a Minkowski space of dimension n, and denote by B the set of all convex
bodies in E". We emphasize here that we only consider convex bodies that have
non-empty interior in [E”, that is, all the members of 8 have dimension n.

Let Aff = Aff (E™) denote the affine group, the Lie group of affine transformations
of E". (For brevity E™ will be suppressed from the notation.) It can be written as
the semi-direct product Aff = T x GL, where T = E" is the (additive) group of



translations of E" and GL is the general linear group of E”. The affine group Aff acts
naturally on ‘B.

The (extended) Banach-Mazur distance function dgys @ B x B is defined, for
C,C' €8, as

dpy(C,C") = min{a > 1|C C ¢(C') C aC + Z for some ¢ € Affand Z € E"}. (1)

It is an easy exercise to show that dp); satisfies the following properties: (i) dpa(C,C") =
1 for C,C" € B if and only if C" = ¢(C) for some ¢ € Aff; (ii) Symmetry: dpp(C,C') =
dpp(C',C) for any C,C’ € B; (iii) Multiplicativity: dga(C,C") < dpnm(C,C")-dpa(C',C")
for any C,C’,C" € ®B; (iv) Affine-invariance: dpp(¢(C), ¢’ (C")) = dpu(C,C’) for any
C,C'e B and ¢, ¢’ € Aff.

It follows that In(dg,s) is a metric on the quotient B/ Aff.

Remark. The extended Banach-Mazur distance function is sometimes called the
Minkowski distance or affine distance. Originally, dy;p was defined only for symmetric
convex bodies.

There are several deep results in connection with the Banach-Mazur metric prop-
erties of B/ Aff. In 1948 in a pioneering work [Fritz John| proved that every convex
body C € ‘B possesses a unique ellipsoid £ € B of maximal volume such that

EccCcn(€—c +e, (2)

where ¢ is the centroid (center) of £. In addition, for C symmetric, the scaling factor
n can be improved to \/n.

Using the Banach-Mazur distance, we thus have dgp(C, &) < n or < /n, for sym-
metric C. Since any two ellipsoids are affine equivalent, properties (iii)-(iv) imply that
dpn(C,C") < n? for any C,C’ € B, and, in addition, dpy/(C,C’) < n provided that
C,C’ € B are both symmetric. By Blaschke’s Selection Theorem, 86 /Aff is complete,
and hence compact. (See [Schneider 2] and also Theorem 1 below.)

There has been extensive work in finding the best possible bounds in John’s esti-
mates. See [Rudelson, Lassak, Gluskin], and also the unified approach by [Guo-Kaijser].

An affine transformation ¢ of E” is called a dilatation (or homothety) if ¢(C) =
aC+ Z, C € E™, for some a € R* =R\ {0} and Z € E™. It is a positive dilatation
if @ > 0. Using this, C,C" € B are related by a (positive) dilatation (or homothetic)
if there exists a (positive) dilatation ¢ such that C' = ¢(C).

The group of dilatations in the affine group is denoted by Dil C Aff. Restricting
to positive dilatations, we obtain the subgroup Dil* C Dil.

Using the semi-direct product Aff = T x GL, if L : Aff — G'L denotes the natural
homomorphism with kernel T, then Dil (resp. Dil") is the inverse image of the center
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R* -1 C GL (resp. R* - 1) under L. Clearly, Dil" is the identity component of Dil.
With respect to the action of Aff on 9B, the subgroup Dil" acts on B freely.

In analogy with the Banach-Mazur metric, for C,C" € B, we define
dp(C,C") = min{a > 1|C C ¢(C') C aC + Z for some ¢ € Diltand Z € E"}. (3)

As for the Banach-Mazur metric, it follows that dp satisfies properties (i)-(iv) with
the affine group Aff replaced by Dil". In particular, dp induces a metric on the
quotient B /Dil".

By definition, we also have

dpm(C,C") = inf{dp(C,¢(C")) | ¢ € Aff} < dp(C,C'), C,C" € B. (4)

Indeed, comparing (1) and (3), o > dpn(C,C’) implies o > dp(C, ¢(C’)), for some
¢ € Aff, so that dpp(C,C’) is greater than equal to the infimum in (4). The reverse
inequality follows from affine invariance of dg,,.

Following [Schneider 1], we now introduce the function p : 6 x B — R by

p(C,C") =min{\ > 0|C + X C XC'for some X € E"}, C,C" € B.

Our first observation is the following:

Proposition 1. The function p is sub-multiplicative:

p(C.C") < p(C.C) - p(C',C"), C.C'.C" € B.

PROOF. Let A > p(C,C’) and N > p(C’,C") so that we have
C+X CAXC and C'+ X' cNC for some X, X' € E". (5)
Combining these, we obtain
C+X+2AX CAC+MX C AN (6)
Thus, we have A\ > p(C,C”). The proposition follows.

Our second and crucial observation is that dp is the symmetrized Schneider func-
tion p:



Proposition 2. We have

dp(C,C) = p(C,C') - p(C',C), C.C' € B. (7)

PRrROOF. Let C,C" € B. Assume that A > p(C,C’) and X' > p(C'C) so that(5) holds
with C” = C. Then (6) gives

Cc Xl —XcINC—-X-)\X".

Setting a = AN, Z = —X — AX’ and ¢(C') = A\C" — X, C' € E", we have ¢ € Dil",
and hence dp(C,C") < a = AX. We obtain dp(C,C") < p(C,C") - p(C',C).
For the reverse inequality, assume that in the definition of dp in (3) we have

CcolC)caC+Z,

for some ¢ € Dilt, a > 1 and Z € E". Since ¢ is a positive dilatation, we have
o(C") = NC"+ X, C" € E™, for some A > 0 and X € E". The inclusions above
then give p(C,C’) < X and p(C’,C) < a/A. Thus, dp(C,C") < «, and we obtain
dp(C,C") > p(C,C") - p(C’,C). The proposition follows.

One of the principal advantages of the function p is its computability in a number
of specific instances. In fact, as [Schneider 1] pointed out, the four basic metric
invariants of a convex body C € 8: the circumradius R¢, the inradius r¢, the diameter
D¢, and the minimal width de can be expressed by p as follows:

RC = p(C,B), (8)

re = ! 9)

7 By (

De = 2p(C*,B), (10)
2

= ey -

where B C E™ is the unit ball, and C* = (C — C)/2 is the Minkowski symmetral of C.
As an immediate consequence of (7)-(11), for C € B, we have

Ip(C.B) = p<c,8>p<87c>=lf—j (12)

D
dp(C*,B) = p(C*,B)p(B,C*) = =<

-7 (13)



In particular, taking ellipsoids, we see that dp is unbounded on 9B /Dil™.

For the next step recall the Hausdorff distance

dg(C,C") =inf{r >0|CcC +rB,C' cC+rB}, C,C'€B.

Proposition 3. Let C,C' € B with respective inradii re,rer > 1. Then we have
dp(C,C") < (1+dg(C,C))3, (14)

wn particular
In dD(C,C/) < 2dH<C, C/>

PRrROOF. Given r > dy(C,C’), we have
CcC +rB and C' CC+rB.

Let Oc and Oc¢' be the incenters of C and C’, respectively. By definition and the
assumption re, 7 > 1, we have B C C — O¢ and B C C' — O¢:. Combining all these,
we have

C+rOqs C C’ +TB+T‘OCI C (1 +’I")C/,
C'+r0; C C+rB+1rOcC (1+7)C.

Hence d(C,C") = p(C,C")p(C",C) < (14 )2, and (14) follows.

Remark. A similar argument shows that, for C,C’ € B, with respective circumradii
Re, Rer < 1, we have
1+dh(C,C) <dpC,C),

where

d,(C,C) = inf{dy(C,C'+ Z)| Z € E"}

is the translation invariant Hausdorff distance. Note that d is not dilatation invari-
ant.

Theorem 1. The metric In(dp) is boundedly compact on the quotient B/Dil*. In
particular, it makes B/Dil" a complete and locally compact metric space.

PROOF. Let (Ck)r>1 C B be a dp-bounded sequence, that is, there exists R > 1 such
that dp(Cg, B) < R for k > 1. Since dp is invariant under positive dilatations, we may
assume that, for £ > 1, the inradius r¢, = 1 and the circumcenter of Cj, is at the origin.
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By Proposition 2 and (12), we have dp(Cy, B) = Re, /rc, = Re, < R. We obtain that
the sequence (Cy)>1 is bounded. By Blaschke’s Selection Theorem [Schneider 2], a
subsequence (Cy, );>1 converges to a convex body C € B in the Hausdorff metric dp.
Since r¢, = 1, we have r¢c = 1 and Proposition 3 applies. We obtain dp(Cy,,C) — 1
as [ — 0o. The theorem follows.

Remark. A similar argument in the use of Proposition 3 and (4) shows that B /Aff
is complete (and hence compact) with respect to dg;.

Since Dil" C Aff is a normal subgroup, the quotient Aff/Dil™ acts on 9B /Dil*
naturally. (As Lie groups, we have Aff/Dil" = GL/(R* - I), a double cover of the
projective general linear group PGL = GL/(R* - I).) By (4), the natural projection
7 B/Dilt — B/Aff is continuous and open with respect to the metrics In(dp)
and In(dpys). (The projection of a dp-metric ball in B /Dil* is a dgy-metric ball of
the same radius in B /Aff.) Thus, the quotient topology by 7 is the Banach-Mazur
topology.

The general linear group GL acts naturally on B/Dil". Indeed, assume that
C,C' € B are related by a positive dilatation: ' = aC+ Z, a > 0, Z € EN. Applying
any ¢ € GL to both sides, we obtain ¥(C") = ¥(aC + Z) = ap(C) + (Z) and the
claim follows.

Moreover, this action of GL on %8 /Dil" is by isometries with respect to the metric
dp. Indeed, let C,C" € 9B, and consider the defining relation C C ¢(C’) C aC + Z,
¢ € Dil", a > 1, Z € E", in the definition (3) of dp(C,C’). Applying any ) € GL, we
obtain

»(C) CP(d(C) = ¢¥(¥(C")) C Y(aC + Z) = a(C) + ¥(2),
where ¢¥ = ¢p~! € Dil" (since Dil" is normal in Aff). We obtain that

dp(¥(C),¥(C")) = dp(C.C"), C,C" € B, ) € GL,

and the claim follows.

Finally, note that the G L-orbits on 98 /Dil* are precisely the fibres of the projec-
tion 7 : B/Dil" — B /Aff. (This is because the afffine group is generated by GL and
Dil".)

To obtain a finer structure on B/Dil", we introduce an equivalence relation ~ on
B as follows: C ~ (', C,C' € B, if, up to a positive dilatation, C and C’' have the
same John ellipsoid. Clearly, ~ depends only on the positive dilatation classes of C
and C’ so that it induces an equivalence relation ~ on the quotient B/Dil". Each
equivalence class is represented by an ellipsoid £ shared (up to positive dilatation)
by every member of the class as its John ellipsoid. We make £ unique by setting its
center at the origin and its inradius one.



By the definition of the John ellipsoid, the equivalence classes are dp-closed. In
addition, if £ is the John ellipsoid of C € B then, by (2), dp(C,&E) < n. We obtain
that the diameters of the equivalence classes are uniformly dp-bounded by 21In(n).
By Theorem 1 above, it follows that the equivalence classes are compact.

Since all ellipsoids are affine equivalent, m maps every equivalence class onto
B/Aff.

Now let € C B/Dil" be an equivalence class with a common John ellipsoid €. Let
Affe C Aff be the stabilizer of £ € B (with respect to the action of Aff on ®B). By
definition, for ¢ € Affe, we have (€) = &; in particular, ¥ (acting on E™) fixes the
origin, the centroid of £. We obtain that Aff C GL. By the discussion above Affg¢
acts on € by isometries (with respect to dp.)

In addition, Aff¢ (acting on E") is transitive on €. Thus, its action on € has the
unique fixed point £ € B. Every other Affg-orbit in € is at a constant dp-distance
from £.

We finally claim that the orbits of the action of Aff¢ on € are precisely the fibres
of the restriction 7 | €. Indeed, if the Dil*-orbits of two convex bodies C’ and C” with
common John ellipsoid £ are mapped to to the same affine orbit by =, then there
is an affine transformation ¢ € Aff such that ¢(C’) = C”. By unicity of the John
ellipsoid, we have ¢(€) = £ so that ¢ € Affg. The converse is clear.

We summarize the structure of B/Dil" in the following:

Theorem 2. (i) The general linear group GL acts naturally on B8 /Dil™ by isometries
with respect to the metric dp, and the orbits are the fibres of the continuous and open
projection  of B/DilT to the Banach-Mazur compactum B /Aff.

(ii) B /Dil" is partitioned into compact equivalence classes induced by the relation on
the convex bodies having the same John ellipsoid (up to positive dilatation). Given
an equivalence class € C B/Dilt with John ellipsoid £ (centered at the origin and
having inradius one), the stabilizer Affe C GL acts on € with the unique fized point
E € B and all other orbits are contained in concentric dp-spheres with center at £.
The orbit space of this action is the Banach-Mazur compactum B /Aff, and the orbit
map is the restriction of the natural projection 7 : B /Dil" — B /Aff to €.

2 The Minkowski Measure and Schneider’s p Func-
tion

Minkowski’s measure of (a)symmetry is defined by

p(C) =min{\ > 0|C+ X C —ACfor some X € E"}, C € B.
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(See [Griinbaum, Schneider 1, Schneider 2].) By the definition of p, we immediately
have

u(C) = p(C,—C), C € B. (15)
We will make use of the classical Minkowski-Radon inequality
1<upu<n. (16)

The lower bound is attained, u(C) = 1, if and only if C is symmetric. The upper
bound is attained, u(C) = n, if and only if C is a simplex. (The statement on the
lower bound is clear. For a list of references of classical proofs for the upper estimate,
see [Griinbaum].)

In addition, following [Schneider 1] again, forming differences of C € 9B in the
defining inequality of p in two ways (to obtain the Minkowski symmetral C*) gives

p(C,C*) = u?é‘)—(i)l (17)
o(C*,C) = % (18)

Proposition 4. For C € B, we have

Rc n dC
— < d —< 1. 1
Dc_n+1 At Tc_n+ <9>

PRrROOF. Using (8)-(11) and (17)-(18) along with sub-multiplicativity of p (Proposition
1), we have

Re — pC,B) _pC.C)  uC) n

De ~ @B 2 a0+l Sntd (20)
dC o 210(876) * _

o ngp(C,C)—u(C)+1§n+l. (21)

In the last inequalities we used monotonicity and the Minkowski-Radon inequality
(16).

Remark. The first inequality in (19) is due to [Bohnenblust] in 1938. Both estimates
in (19) have been proved by [Leichtweiss] in 1955, and a few years later independent
proofs have been given by [Eggleston]. In Euclidean space there are sharper estimates



due to [Jung| and [Steinhagen]|, respectively. In Minkowski space the upper bounds in
(19) are sharp and attained on any simplex A whose difference body A—A = B C E”
is the unit ball. Conversely, if equality holds for a convex body C € B in either of the
inequalities in (19) then C is still a simplex with some specific properties as described
by [Leichtweiss, Satz 2 and Satz 3].

Finally, we note the universal estimate in [Schneider 1] on pairs of convex bodies:

p(C.C) :
L) <p c,0e® 99
p(C*’Cl*) - ( )

This is also a consequence of sub-multiplicativity of p (applied twice) as

pCL) _ ooy oy < € p€)+1

p(C.C) = Sho+1 2 SantisEn )

If the upper bound is attained then we immediately see that u(C) = u(C') = n so
that C and C’ are both simplices. In addition, as shown by [Schneider 1], C" must be
homothetic to —C , in fact, this characterizes the upper bound n.

3  Stability

Generally speaking, given a universal geometric inequality for convex bodies with ex-
tremal values attained by a geometrically well-characterized class of extremal convex
bodies, a stability estimate for this inequality quantifies the deviation of a near-
extremal convex body from the extremal ones.

The deviation depends on the metric used for the convex bodies. One of the pri-
mary aims of these notes is to show that, for many geometric estimates, the metric
dp on B/Dilt is a better fit than the traditional Banach-Mazur metric.

The simplest (and unfortunately non-illustrative) example is furnished by the
lower bound g = 1 in the Minkowski-Radon inequality (16). This lower bound is
attained by symmetric convex bodies. By (17)-(18), we have

dp(C,C*) = p(C,C*)p(C",C) = p(C).

Since the Minowski symmetral is symmetric, the stability estimate here is a tautology:
If the Minkowski measure of C € 8B is close to 1 then so is the dp-distance of C from
its Minkowski symmetral C*. (Recall that In(dp) is the metric on B/Dil*.) If dp is
replaced by Banach-Mazur’s dgys then, by (4) and the above, we have dgy(C,C*) <
w1(C), C € B. Once again, a trivial stability estimate follows.
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For a genuine and illustrative example, consider the upper estimate in (16). The
upper bound g = n is attained by simplices. Now the analysis of [Schneider 1,
Theorem 2.1] applied to our distance dp (verbatim) gives the following:

Given 0 < € < 1/n, we have

1
CeB: n—e<pulC) = dD(C,A)<1+M, (24)
— ne
with a suitable simplex A € B (constructed using [Yaglom-Boltyanskii]’s approach to
Helly’s Theorem). (For previous estimates, see [Guo| and [Bordczky 1], [Béroezky 2].)
Then, Schneider’s original estimate in dgys follows by (4).

Stability estimates for the classical inequalities in (19) follow directly from (24)
using monotonicity of the upper bounds in (20)-(21) in the variable p(C):
If a convex body C € *B satisfies one of the conditions

Rc n—e C
e, nTe N |
D™ n—e+1 o re noetl

then, for the same simplex A € B as in (24), we have

n+1
— ne

dD(C,A) <1+ €.

For a stability estimate of the inequality in (22), assume

n__ o rCC)
n+1 = p(C*,C™)

Then (23) along with p(C), u(C") < n imply u(C) > n —ne and u(C') > n — e. Using
(24) again, we obtain simplices A, A’ € B such that
(n+1)n

+1
dp(C,A) <1+ T and dp(C, A <1+ 2
p(C,A) <1+ [ € an p(C,A") < R

€.

A delicate analysis in [Schneider 1] gives much more: For 0 < € < 1/n(5n?+ 1), there
exists a simplex Ay with centroid at the origin such that

and dD(A(),C/) < L

1 —n(5n?+ 1)
Indeed, his proof gives homothetic copies C and €’ of C and C’, respectively, such that

(1—n(Gn?+1)e)AyCc —CC Ay and (1—2ne)A, C —C' C A,.
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Finally, we discuss stability estimates for a sequence of mean Minkowski measures
{ocm}tm>1, C € B, introduced in [Toth 1, 2].

Let C € B and O € intC. For C € 9C, denote A(C,O) the ratio into which O

divides the chord in C passing through C' and O with other end-point C° € 9C:
d(C,0)

AC,0) = ——% 25

( ) ) d(co7 O) ? ( )

where d is the distance on E™. This defines the distortion function A = A¢ : 9C x

int C — R. (The depencence on C will be indicated by subscript if necessary.) Clearly,

(C°)° = Cand A(C?,0) =1/A(C,0), C € 9C. It follows by an elementary argument

that A : 9C x intC — R is continuous [Toth 2].

It is well-known that the Minkowski measure of (a)symmetry p can be expressed
via the distortion by

p(€) = inf maxAc(C,0), € €B. (26)

(See, for example [Griinbaum].)

Now, given m > 1, a multi-set {Cy,...,C,,} C OC (repetition allowed) is called
an m-configuration of C (with respect to O) if O is contained in the convex hull
conv (Cy, . ..,Cp). The set of m-configurations of C is denoted by €,,(0) = €¢,,.(O).

We define the function o, = o¢,, : intC — R, as follows

= 1
m(0) = inf N7 W
m(0) {Co,.... C}S}e€m(0);/\(ci,0) +1

, O € intC. (27)
Since A is continuous and JC is compact, the infimum is attained. An m-configuration
at which o,,(O) attains its minimum is called minimal.
We define
on, = sup 0,(0), m>1.
O€cintC

An elementary argument shows that the supremum is attained [Toth 2]. (Clearly,
o1 = o} = 1 identically on intC.)

Any m-configuration (with respect to an interior point O) can be extended to an
(m + k)-configuration, & > 1, by adding k copies of a boundary point of C at which
A(., O) attains its maximum. Thus we have the following sub-arithmeticity:

k
maxge A+, O) +

Om+k(0) < 0, (0) + T O € intC, m,k> 1. (28)

11



As a direct consequence of Carathéodory’s theorem, equality holds for m = n and
k > 1, that is, the sequence {0, }m>1 is arithmetic with difference 1/(maxge A + 1)
from the n-th term onwards [Toth 1]. In particular, by (26), we have
) lop 1
lim = .

Finally, we recall the fundamental estimate for the sequence {0, }m>1:

1§0m§T§iﬂnZL (29)
Assuming m > 2, 0,,(0) = (m+1)/2 for some O € intC if and only if C is symmetric
with respect to O. If, for some m > 1, ,,(0O) = 1 at O € intC, then m < n
and C has an m-dimensional simplicial intersection across O, that is, there exists an
m-~dimensional affine subspace & C E", O € &£, such that C N € is an m-simplex.
Conversely, if C has a simplicial intersection with an m-dimensional affine subspace
€ then ¢ = 1 identically on intC N E. (For details, see [Toth 2].)

We first derive a stability estimate for the upper bound in (29) as it is much
simpler.

Theorem 3. Let 2 <m <n and

If C € B satisfies
el <o, (30)

then we have
n+1

m—1

dp(C,C*) <142 c. (31)

PROOF. Sub-arithmeticity in (28) (with m = 1 and k = m — 1) along with (26) gives

m—1

Foo< 14 ———.
Zem =T e 1

Combining this with the imposed lower bound (30), we obtain

2
—1e2 (32)

< =
me) <15 1-6
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where 0 = 2¢/(m — 1). The imposed restriction on e translates into

n—1

0<46< .
n+1
Thus, in (32), we have 2/(1 — ) < n + 1. Finally, as noted above dp(C,C*) = u(C).
Putting these back in (32) we obtain (31).

Turning to a stability estimate for the lower bound in (29), recall that ¢ ,,,(0) =1
if and only if C has an m-dimensional simplicial slice across O. Hence a stability
estimate can only be expected for o¢ = o¢ .

As a first attempt, let 0 < e < 1/n(n+1) and C € B. We claim that if
o <1+e (33)
then there exists a simplex A C C such that

(n+1)%
—ne

dp(C,A) <1+ (34)
To show this, let O* € intC be a point at which the infimum in (26) is attained:
1(C) = maxge A(+, O*). (The minimal level-set of maxge A comprised of these points
is the critical set of C, a compact convex set of codimension > 2; see [Klee].) Using
the trivial lower bound in (27) for o, we obtain

n+1 n+1
= <o¢
,U(C) +1 maXpc A(, O*) +1

(O") <o <1l+e.

Rearranging and estimating, we find

n—e

n—(n+1)e< < u(C).

+ €
Now (24) applies (with e replaced by (n + 1)¢) and (34) follows.
To obtain a stronger stability estimate one needs to relax the inequality in (33).

Theorem 4. Let C € B and O € intC satisfying

L 0) <
r%%xAc( ,0) <n. (35)

Assume that, for 0 < e <1/(n+1), we have

1 <o0c(0) <1 +e (36)
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Then for the convex hull A of any minimal configuration we have

dp(C,A) < —

STt )e (37)

PROOF. We first note that we can lower the value of € (to o¢(O) — 1), and instead of
(36), impose

1<oe(0) <14+ ——. (38)
n
(For simplicity, we excluded the trivial case o¢(O) = 1.) Assuming now (35) and

(38), using a complex construction in [Toth 3, Theorem 1] we showed that, for the
convex hull A of any minimal configuration, we have

AcCcCcA=#A-0C)+C, (39)
where
N 1 " 1 1
= — CieA 40
¢ oc(0) =1 ; (AC(CZ-,O) +1  AA(C;,0) + 1) < (40)
and
~ 1
r = (41)

1—(n+1)(oc(0) —1)
Thus, dp(C,A) < 7, and we obtain (37) (for € = 0¢(O) — 1). The theorem follows.

Remarks. 1. According to a classical result of Minkowski, A(C, g(C)) <n, C € 0C,
where ¢(C) is the centroid of C [Bonnesen-Fenchel]. Hence (37) holds if 1 < o(g(C)) <
1+1/(n+1). .

2. As the example of the semi-disk shows, the center of similarity C' can be on the
boundary of C.
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