## Fields of interest

Vertex algebras, quantum vertex algebras, and Kac-Moody Lie algebras

## Publications

### Book

*Introduction to Vertex Operator Algebras and Their Representations*, Progress in Math. **227**, Birkhäuser, Boston, 2004, 318 pages (with James Lepowsky).

### Selected Journal Articles

- Quantum vertex algebras and their phi-coordinated quasi modules,
*Commun. Math. Phys.***308**(2011) 703-741. - h-adic quantum vertex algebras and their modules,
*Commun. Math. Phys.***296**(2010) 475-523. - Modules-at-infinity for quantum vertex algebras,
*Commun. Math. Phys*.**282**(2008) 819-864. - A new construction of vertex algebras and quasi modules for vertex algebras,
*Adv. Math.***202**(2006) 232-286. - Nonlocal vertex algebras generated by formal vertex operators,
*Selecta Mathematica (N.S.)***11**(2005) 349-397. - On certain categories of modules for affine Lie algebras,
*Math. Z.***248**(2004) 635-664. - Certain extensions of vertex operator algebras of affine type,
*Commun. Math. Phys*.**217**(2001) 653-696. - On abelian coset generalized vertex algebras,
*Commun. Contemp. Math.***3**(2001) 287-340. - Twisted representations of vertex operator algebras,
*Math. Ann.***310**(1998) 571-600, with C. Dong and G. Mason. - An analogue of the Hom-functor and a generalized nuclear democracy theorem,
*Duke Math. J.***93**(1998) 73-114. - Regularity of rational vertex operator algebras,
*Adv. Math.***132**(1997) 148-166, with C. Dong and G. Mason. - Local systems of vertex operators, vertex superalgebras and modules,
*J. Pure Appl. Alg.***109**(1996) 143-195. - Symmetric invariant bilinear forms on vertex operator algebras,
*J. Pure Appl. Alg.***96**(1994) 279-297.