Fields of interest
Vertex algebras, quantum vertex algebras, and Kac-Moody Lie algebras
Publications
Book
Introduction to Vertex Operator Algebras and Their Representations, Progress in Math. 227, Birkhäuser, Boston, 2004, 318 pages (with James Lepowsky).
Selected Journal Articles
- Quantum vertex algebras and their phi-coordinated quasi modules, Commun. Math. Phys. 308 (2011) 703-741.
- h-adic quantum vertex algebras and their modules, Commun. Math. Phys. 296 (2010) 475-523.
- Modules-at-infinity for quantum vertex algebras, Commun. Math. Phys. 282 (2008) 819-864.
- A new construction of vertex algebras and quasi modules for vertex algebras, Adv. Math. 202 (2006) 232-286.
- Nonlocal vertex algebras generated by formal vertex operators, Selecta Mathematica (N.S.) 11 (2005) 349-397.
- On certain categories of modules for affine Lie algebras, Math. Z. 248 (2004) 635-664.
- Certain extensions of vertex operator algebras of affine type, Commun. Math. Phys. 217 (2001) 653-696.
- On abelian coset generalized vertex algebras, Commun. Contemp. Math. 3 (2001) 287-340.
- Twisted representations of vertex operator algebras, Math. Ann. 310 (1998) 571-600, with C. Dong and G. Mason.
- An analogue of the Hom-functor and a generalized nuclear democracy theorem, Duke Math. J. 93 (1998) 73-114.
- Regularity of rational vertex operator algebras, Adv. Math. 132 (1997) 148-166, with C. Dong and G. Mason.
- Local systems of vertex operators, vertex superalgebras and modules, J. Pure Appl. Alg. 109 (1996) 143-195.
- Symmetric invariant bilinear forms on vertex operator algebras, J. Pure Appl. Alg. 96 (1994) 279-297.