Fields of interest

Vertex algebras, quantum vertex algebras, and Kac-Moody Lie algebras

Publications

Book

Introduction to Vertex Operator Algebras and Their Representations, Progress in Math. 227, Birkhäuser, Boston, 2004, 318 pages (with James Lepowsky).

Selected Journal Articles

  1. Quantum vertex algebras and their phi-coordinated quasi modules, Commun. Math. Phys. 308 (2011) 703-741.
  2. h-adic quantum vertex algebras and their modules, Commun. Math. Phys. 296 (2010) 475-523.
  3. Modules-at-infinity for quantum vertex algebras, Commun. Math. Phys. 282 (2008) 819-864.
  4. A new construction of vertex algebras and quasi modules for vertex algebras, Adv. Math. 202 (2006) 232-286.
  5. Nonlocal vertex algebras generated by formal vertex operators, Selecta Mathematica (N.S.) 11 (2005) 349-397.
  6. On certain categories of modules for affine Lie algebras, Math. Z. 248 (2004) 635-664.
  7. Certain extensions of vertex operator algebras of affine type, Commun. Math. Phys. 217 (2001) 653-696.
  8. On abelian coset generalized vertex algebras, Commun. Contemp. Math. 3 (2001) 287-340.
  9. Twisted representations of vertex operator algebras, Math. Ann. 310 (1998) 571-600, with C. Dong and G. Mason.
  10. An analogue of the Hom-functor and a generalized nuclear democracy theorem, Duke Math. J. 93 (1998) 73-114.
  11. Regularity of rational vertex operator algebras, Adv. Math. 132 (1997) 148-166, with C. Dong and G. Mason.
  12. Local systems of vertex operators, vertex superalgebras and modules, J. Pure Appl. Alg. 109 (1996) 143-195.
  13. Symmetric invariant bilinear forms on vertex operator algebras, J. Pure Appl. Alg. 96 (1994) 279-297.