skip to main content

Department Chair
Dr. Gabor Toth
(856) 225-6538

Graduate Program Director
Dr. Haydee Herrera-Guzman
(856) 225-2667

Faculty Undergrad Advisers
Pure Mathematics:
Josephine Johansen
Applied Mathematics:
Dr. Joseph Gerver

Sangeetha Maheshwari
(856) 225-6076

Student Spotlight

We R Arts and Sciences: Azka Ahmed

Azka Ahmed“Rutgers–Camden has a very special place in my heart,” says Honors College student Azka Ahmed. Read more ...

Home » Rutgers-Camden Preprint Series

Rutgers-Camden Preprint Series

  1. Kuhei Miura (Tokyo University of Science) and Gabor Toth (Rutgers University – Camden)
    On the moduli of isotropic and helical minimal immersions between spheres. Download the PDF file.

  2. Benedetto Piccoli (Rutgers University–Camden), Nastassia Pouradier Duteil (Rutgers University–Camden), and Benjamin Scharf (Technische Universität München) paper, Optimal control of a collective migration modelDownload the PDF file.

  3. Qi Guo (Suzhou University of Science and Technology) and Gabor Toth (Rutgers University – Camden) Dual Mean Minkowski Measures and the Grünbaum Conjecture for Affine Diameters. Download the PDF file.

  4. Toth, Gabor (Rutgers University–Camden) Notes on Schneider’s Stability Estimates for Convex Sets in Minkowski Space. Download the PDF file.

  5. Caponigro, Marco (IMATH, Paris), Fornasiery, Massimo (Technische Universität München), Piccoli, Benedetto (Rutgers University-Camden), Trélat, Emmanuel (Université Paris 6), Sparse Stabilization and Control of the Cucker-Smale Model. Download the PDF File.
  6. Johnson, Russell  (Universita di Firenze) and Nerurkar, Mahesh (Rutgers University–Camden), On SL(2,R) valued cocycles of Hölder class with zero exponent over Kronecker flows. Download the PDF file.

  7. Nerurkar, Mahesh (Rutgers University–Camden), On SL(2,R) valued smooth proximal cocycles and cocycles with positive Lyapunov exponents over irrational rotation flows. Download the PDF file.

  8. Haisheng Li (Rutgers University–Camden) and Qiang Mu (Harbin Normal University), On quasi modules at infinity for vertex algebras. Download the PDF File.

  9. Cuipo Jiang (Shanghai Jiaotong University) and Haisheng Li (Rutgers University–Camden), Associating quantum vertex algebras to Lie algebra gl. Download the PDF File.

  10. Haisheng Li (Rutgers University–Camden), G-equivariant φ-coordinated quasi modules for quantum vertex algebras. Download the PDF File.

  11. Haisheng Li (Rutgers University–Camden), Shaobin Tan and Qing Wang (Xiamen University), On vertex Leibniz algebras. Download the PDF File.